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Manual for ZO version 2.3
Tom A.B. Snijders ∗

July 31, 2002

Abstract

ZO is a computer program that carries out simulation and/or enumeration analysis
of graphs with given degrees. It is also possible to fix the number of mutual ties in
a digraph and to restrict the analysis to connected graphs. This manual gives some
information about ZO version 2.3. (July, 2002).

∗I am grateful to Peter Boer and Mark Huisman for their cooperation in the development of the StOCNET
program. Authors’ address: Tom Snijders, ICS, Department of Sociology, Grote Rozenstraat 31, 9712 TG
Groningen, The Netherlands, t.a.b.snijders@ppsw.rug.nl.
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1. ZO

ZO (‘Zero-One’) is a computer program that carries out simulation and/or enumeration
analysis of graphs with given degrees according to the algorithms of Snijders (1991) and
Molloy and Reed (1995). For undirected graphs the degrees are held constant; for directed
graphs (digraphs) the in-degrees as well as the out-degrees are held constant; for digraphs
also the number of mutual ties may be held constant; and it is possible to restrict the
analysis to connected (di)graphs.

Such analyses can be useful, e.g., for testing the degree of reciprocity, the degree of
transitivity, or the eigenvalue centrality of vertices, controlling for the observed degrees.

In addition, ZO can be used to simulate and/or enumerate square or rectangular 0-1
matrices with given marginal sums without structural zeros – which can be interpreted as
bipartite graphs with given degrees; as well as such matrices with an arbitrary predeter-
mined set of structural zeros.

This manual gives information about the version, ZO 2.3 (July 2002). The program was
programmed in Delphi by Tom Snijders on the basis of earlier DOS programs.

The program and this manual can be downloaded from the web site,
http://stat.gamma.rug.nl/stocnet/. The best way to run it is as part of the StOCNET
program collection (Boer, Huisman, Snijders, & Zeggelink, 2002), which can be down-
loaded from the same website. For the operation of StOCNET, the reader is referred to the
corresponding manual. If desired, ZO can be operated also independently of StOCNET.

This manual consists of two parts: the user’s manual and the programmer’s manual.
There are two parallel pdf versions: ZO man s.pdf for screen viewing and ZO man p.pdf
for printing. They were made with the LATEX pdfscreen.sty package of C.V. Radhakrishan
which, e.g., inserts various hyperlinks into the manual. Both versions can be viewed and
printed with the Adobe Acrobat reader. This is the screen version.
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Part I

User’s manual

The user’s manual gives the information for using ZO. It is advisable also to consult
the user’s manual of StOCNET because normally the user will operate ZO from within
StOCNET.
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2. The purpose of ZO

The ZO package is for the determination of probability distributions of statistics of random
(undirected) graphs with given degrees, and random digraphs with given in- and out-
degrees. Such graphs and digraphs can be represented by their adjacency matrices, which
are square matrices with 0 and 1 elements and with an all 0 diagonal. The program is
called Z(ero)-O(ne) in an allusion to this representation by 0-1 matrices. The number of
vertices is denoted by n. The matrix is denoted

X =
(
Xij

)
1≤i,j≤n

,

where Xij is 0 or 1 accordingly to whether there is not, or there is, an arc from vertex i to
vertex j. It is assumed that there are no self-relations: Xii = 0 for all i. In other words,
the diagonal of the adjacency matrix is structurally zero.

The in- and out-degrees are just the row and column sums of this adjacency matrix.
Using a + sign for summation over the index, they are denoted by X+i and Xi+ , respec-
tively. The vertices of the graph or digraph correspond to the rows and columns of the
adjacency matrix. For undirected graphs the adjacency matrix is symmetric, and there is
no distinction between in- and out-degrees. Instead of arc, the term edge then also is used.

In addition, ZO also can determine the distribution of statistics for more general random
0-1 matrices with given row and column sums: both for arbitrary rectangular 0-1 matrices,
and for rectangular 0-1 matrices with the restriction that a given set of cells has all 0 entries,
the so-called structural zeros. For graphs and digraphs, the set of structural zeros is the
diagonal of the matrix.

For graphs, the extra requirement can be imposed that they be connected; for digraphs,
that they be weakly connected. A graph (digraph) is disconnected (i.e., not connected) if
there are at least two non-empty subsets of vertices without edges (arcs) between them.
For digraphs, the extra requirement can be imposed that also the number of mutual dyads

M =
∑
i<j

Xij Xji (1)
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be equal to a given number.
In all these cases the distribution of random 0-1 matrices considered in ZO is uniform,

i.e., each matrix satisfying the restrictions has the same probability (cf. Wasserman and
Faust, 1994, Chapter 13). The ZO package contains two programs: the most important is
zo sim for analysis by Monte Carlo simulation; in addition there is the program zo enum for
analysis by enumeration, but this is feasible only for very small graphs (no more than 7 to 9
vertices, depending on the distribution of the degrees and the speed of the computer). E.g.,
for nine vertices with the in-degree sequence (2, 2, 2, 2, 2, 2, 2, 1, 1) and the out-degree
sequence (2, 2, 2, 2, 2, 1, 1, 2, 2), the total number of possible digraphs is 132,272,868.
This is close to the limit of what can still be enumerated by zo enum. The main purpose of
zo enum is to check the results of zo sim – and, of course, the fun of being able to enumerate
such a set of matrices.

2.1. Various testing problems, conditional on degrees

The main purpose in Social Network Analysis for using graph distributions conditional on
the degrees, is to test structural properties of an observed network, while controlling for
the degrees. The importance of this is discussed, among others, in Katz and Powell (1957),
Wasserman (1977), Rao and Bandyopadhyay (1987), Snijders (1991), and Roberts (2000).

2.1.1. Testing reciprocity in digraphs

A first testing problem for directed relations is to test whether reciprocated choices occur
more frequently than expected by chance, given the in- and out-degrees. The number of
mutual dyads M is the obvious test statistic. Controlling for the in- and out-degrees means
that, in the notation commonly used in social network analysis (cf. Wasserman and Faust,
1994, Chapter 13), this statistic is tested in the U | Xi+ , X+i distribution. The p-value for
testing reciprocity, conditional on the in- and out-degrees, is the probability of obtaining
in the U | Xi+ , X+i distribution a value of M at least as large as the value observed in
reality. This probability (estimated by simulation) can be found in the output of ZO.
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2.1.2. Testing transitivity in digraphs

Testing transitivity in digraphs under the U | Xi+ , X+i and U | Xi+ , X+i , M distributions
is discussed extensively in Karlberg (1999). Transitivity of choice in directed relations
means that the presence of ties i → j and j → k increases the likelihood of the existence
of the tie i → k. A triplet, i.e., an ordered triple of vertices (i, j, k), is called positive
transitive if Xij = Xjk = Xik = 1; intransitive if Xij = Xjk = 1, Xik = 0; vacuously
transitive if Xij = 0 or Xjk = 0; and potentially transitive if Xij = Xjk = 1. Note that
in this definition, and in the picture, the existence of arcs from j to i, k to j, or k to i, is
immaterial; that is why the terminology is about triplets rather than triads.
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Transitivity may usually be considered as an effect of higher order than reciprocity.
Therefore, it makes sense in a test for transitivity to control not only for the degrees but
also for the number of mutual dyads. Controlling for the observed in- and out-degrees and
also for the observed number of mutual dyads means that the U | Xi+ , X+i , M distribution
defines the null hypothesis.

Transitivity can be measured by the numer of positive transitive triplets,

Tr =
∑
i,j,k

Xij XjkXik ,
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but also, inversely, by the number of intransitive triplets,

Intr =
∑

i,j,k;i 6=k

Xij Xjk (1−Xik) .

The sum of these, Tr + Intr, is the total number of potentially transitive triplets. A measure
for transitivity which is attractive because it is always between 0 and 1 is defined by the
ratio

Rtrans =
Tr

Tr + Intr
(2)

of positive transitive to potentially transitive triplets. For undirected graphs, this index was
used also by Frank and Harary (1982) and by Karlberg (1997) – but without conditioning
on the degrees. For directed graphs, and with conditioning on the degrees, it was used by
Karlberg (1999, see p. 230).

If we control for the degrees and the number of mutuals, these three are equivalent test
statistics, since the sum Tr + Intr is a function of the degrees and the number of mutuals:

Tr + Intr =
∑

i,j,k;i 6=k

Xij Xjk (Xik + 1−Xik) (3)

=
∑
i,j,k

Xij Xjk −
∑
i,j

Xij Xji =
∑
i,j,k

Xij Xjk − M (4)

=
∑
j

X+j Xj+ − M . (5)

Therefore, if we condition only on the degrees, which implies that M remains a random
variable, then there can be slight differences between the p-values produced by these three
test statistics. But if we condition on the degrees as well as the number of mutuals, then
the p-values obtained for these three test statistics are equal.

The enumeration program in ZO presents the distributions of Tr and Intr; the simula-
tion program presents the (estimated) distribution of the ratio Rtrans . Depending on the
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specification given by the user, this is the distribution under the U | Xi+ , X+i , M or the
U | Xi+ , X+i distribution. From this distribution, the p-value for the test of transitivity
can be obtained as the probability of obtaining a random value for the test statistic Tr or
Rtrans which is at least as large as the value observed in reality.

2.1.3. Testing transitivity in undirected graphs

In undirected graphs, reciprocity is not an issue – it is a definition. Transitivity can be
defined and tested as in the discussion above, with the restriction that all ties are recip-
rocated by definition (Xij = Xji for all i, j). The transitivity ratio Rtrans was proposed
already by Frank and Harary (1982) for testing transitivity in a graph. ZO can be used
to test transitivity in undirected graphs, conditioning on all degrees, analogous to what
was explained above. The null distribution canbe indicated as the U | Xi+ distribution for
undirected graphs.

2.1.4. Testing eigenvector centrality

Centrality of vertices in graphs can be measured in various ways, cf. Bonacich (1972a,b) and
Freeman (1979). Degrees are one way. Another way is the eigenvector centrality defined
by Bonacich (1972a) for undirected graph as the first eigenvector of X, and by Bonacich
(1972b) for bipartite graphs as the first eigenvector of X ′X. It is argued in Bonacich et
al. (1998) that these eigenvector centrality value tend to be highly correlated with the
degrees, and therefore it can be advisable to control their values for the degrees. This can
be done using ZO, for bipartite as well as undirected and directed graphs. For directed
graphs, however, the matrix is symmetrized before calculating the eigenvector centralities.
Eigenvector centralities can be requested, and their null distributions calculated under the
probability distributions available in ZO. Examples are presented in Bonacich et al. (1998).
Since eigenvector centralities have the most clear interpretation for graphs with only one
connected component, it may be advisable when using these centralities to restrict the
simulations to connected graphs.
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The eigenvector centralities in ZO are calculated differently for square matrices and for
non-square matrices.

For square matrices, they are defined as the elements of the eigenvector belonging to
the largest eigenvalue of X(s), where X(s) is the symmetrized version of the matrix X. The
symmetrization is defined by

X
(s)
ij = max{Xij , Xji} .

The mentioned eigenvector is the vector a which is the solution of

X(s)a = λa

where λ (the eigenvalue) is the largest real number for which this system of equations has
a solution. The eigenvector a is normed in such a way that the sum of squared elements of
a (i.e., its squared Euclidean length) is equal to the square of λ.

For non-square matrices, the eigenvector centralities are defined as the elements of the
eigenvector belonging to the largest eigenvalue of X ′X. In this case, the eigenvector is
normed to have unit length.

2.2. Other statistics

A number of descriptive graph statistics are programmed in ZO and are calculated for
all generated graphs. For users interested in other statistics, several options are open.
Those who can program in Delphi could extend the Delphi code (see Section 10). Another
possibility may be to propose to Tom Snijders to include important additional statistics
in the next version of ZO. Finally, as mentioned in Section 5.4, it is possible to write all
generate matrices to a file. This can then be used to calculate the desired statistics; to
estimate distributional properties, it will be necessary to take into account the weights that
are also written to this file.
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Number of digraphs with the given degrees

The number of digraphs with given degrees, or, more generally, the number of 0-1 matrices
with given marginal sums and perhaps a given set of structural zeros, can also be calculated
by different means than complete enumeration. This provides a way of independently
checking the enumeration algorithm. The Enumerate option will calculate some formulae for
obtaining these numbers. Which formulae are calculated depends on the type of matrix (see
Section 5.1: unrestricted, digraph, graph, or general). For undirected graphs no calculations
of this kind are made.

For the other types of matrix, an approximate formula of Bender (1974) is calculated
that approximates the number of 0-1 matrices with given marginals and a given set of
structural zeros. This formula is a good approximation if the matrix is sparse (i.e., has a
small fraction of 1 entries) and if the number of rows and columns is large.

For unrestricted rectangular matrices, Sukhatme’s (1937) formula is calculated that
gives the exact number of 0-1 matrices with these marginals.

For digraphs, it is possible to request the calculation of the formula of Katz and Powell
(1954, 1957) for the number of digraphs with these in- and out-degrees. However, this is a
highly recursive formula and the program unfortunately is liable to run into an error except
for quite low values of the degrees. Therefore this option is available only as a curiosity for
the cases where it does work, and not intended for general use.
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3. Operation of the program

The program works very simply. What it needs from the user is the specification of the
type of matrix (i.e., type of graph) and the degrees. The degrees can be given by means of
a whole matrix (from which the degrees then will be copied), or just by giving a file with
only the degrees; see Section 6.1.

The user must choose between the two options, Simulate and Enumerate. The first
option, simulation, is the most important from a practical point of view.

The second option enumerates all matrices satisfying the constraints given. Sometimes
it is helpful for understanding the structure of the U | Xi+ , X+i , M or U | Xi+ , X+i

distribution to know exactly all possible graphs for a given sequence of degrees, and this is
what the Enumeration option does. However, this is feasible only if the numbers of rows
and columns are very small. ZO automatically disables the Enumerate option for more than
15 rows or columns, but this is a very high threshold. Usually about 8 rows and columns
are the maximum for which enumeration is a practical option (the exceptions are some
very skewed degree distributions, where out-degrees are strongly negatively correlated with
out-degrees). Otherwise the number of possible adjacency matrices just is too large.

For the Simulate option, it is necessary to specify how many simulation runs should be
carried out. The default value in StOCNET is 10,000.

During the operation of the program, you see a counter that indicates how many matrices
were produced up to now. For the simulation option, another counter is shown that indicates
how many attempts were made to simulate a matrix. This is because the algorithm can
make trials that fail – after which it tries again. This happens especially often when
simulating digraphs with a fixed number of mutual dyads, if this number is relatively high
or low given the degrees. It often happens often when employing the Molloy-Reed algorithm
(cf. Section 4 about the algorithms used).
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It is possible to request early termination of the program. With the Enumerate option,
this means that no meaningful results are obtained – the population then has been enumer-
ated only incompletely. With the Simulate option, it implies only that less simulations were
carried out than originally planned, so the precision of the results is less, but the results
are stil meaningful.

The program writes results to an ASCII file. This includes the mean, variance, standard
deviation, a histogram, and the cumulative distribution function of a number of graph
statistics. To obtain a unified and relatively simple output layout, the program focuses on
statistics with integer values from 0 to 100. The statistics are described in Section 5.2.
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4. Algorithms

4.1. Enumeration

The enumeration algorithm in the Enumerate option constructs the enumeration tree as
discussed in Snijders (1991). For constructing each consecutive matrix, only the differences
with respect to the previously constructed matrix are traced, which makes for a very fast
algorithm. The constraints of the integer type in Delphi programming imply that no more
than 2,147,483,647 matrices can be enumerated. To give an impression how many digraphs
there are with given degrees, the following table gives, for digraphs with g vertices and all
in- and out-degrees equal to 1, the number N of digraphs and the result of Bender’s (1974)
approximate formula. This illustrates the high degree of precision of Bender’s formula for
sparse digraphs already for a low number of vertices. For higher average degrees there can
be considerable deviations between this formula and the exact number.

g Bender N
7 1,854 1,854
8 14,833 14,833
9 133,496 133,496
10 1,334,961 1,334,961
11 14,684,570 14,684,570
12 176,214,841 176,214,841
13 2,290,792,932 ??

The enumeration possibilities are limited by the computing time necessary for enumer-
ating these possibly huge numbers of matrices; and by the depth of the enumeration tree
(a constant in the program).
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4.2. Simulation

The combinatorial difficulties of constraining both the row sums and the column sums
of a 0-1 matrix are such that there is no straightforward direct algorithm for randomly
simulating such matrices. ZO offers the choice between two simulation algorithms. In both
algorithms, there is the possibility that at some point an attempted construction of a matrix
with the given constraints has to be discarded, because the constraints cannot be satisfied
given the cells of the matrix determined up to this point. This will then be indicated in
the ZO Simulation interface by the number of attempts being greater than the number of
simulated matrices. This has no consequences for the quality of the obtained results except
that it will increase the computing time required for generating a given number of matrices.

The first algorithm is the one proposed by Snijders (1991). It generates matrices not with
uniform but with varying probabilities. The varying nature of the probabilities is corrected
when estimating the probability distribution of the statistics, so that (practically) unbiased
results are obtained for the uniform distributions even though the sampling is not uniform.
This is discussed in Snijders (1991) and, less extensively, in Karlberg (1999). The former
reference also indicates how the sampling method is defined in view of the purpose of having
probabilities that are not strongly variable. The inverses of the probabilities are used as
weights in the estimation of the probability distribution (see equation (6). If these inverse
probabilities are extremely highly variable, the estimates are averages of a very long-tailed
distribution, which may lead to unreliable estimation. In that case, a warning message is
printed in the output file.

For graphs and digraphs the rows and columns are reordered to increase efficiency. (Of
course, rows and columns are reordered in the same way to retain the graph structure.)
The reordering is so that the value of | g − 1 − 2xi+ | is non-increasing, where g is the
number of vertices. If this is done, it is mentioned in the output and the new vertex order
is given. The statistics defined in Section 5.2 that refer specifically to vertices 1 and 2 are
not affected by this reordering, i.e., they refer to the vertices that had number 1 and 2,
respectively, in the original order.
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The second algorithm was proposed by Molloy and Reed (1994). It starts with generat-
ing graphs, digraphs or bipartite graphs allowing loops (i.e., edges or arcs from a vertex to
itself) and multiple edges or arcs. In other words, a matrix is generated with nonnegative
integer elements without the constraint of the structural zeros (the diagonal in the case
of graphs and digraphs) and without the constraint that the elements may not be larger
than 1. Constructed matrices with 1 entries in at least one of the structurally zero cells
or with entries larger than 1 are discarded (‘failed attempts’). Molloy and Reed (1994)
proved that for sparse undirected graphs, the fraction of failed attempts will be relatively
low, and in this case this algorithm will be more efficient than that of Snijders. For directed
graphs, however, the Molloy-Reed algorithm can lead to a fraction of failed attempts close
to 100%, and therefore can be very inefficient. The interpretation is that for symmetric
sparse 0-1 matrices, the structurally zero diagonal is not a very severe restriction, but for
non-symmetric 0-1 matrices it is.

The advice for directed graphs therefore is to use the Snijders algorithm. For undirected
graphs both algorithms can be used; if the graph density is low, the Molloy-Reed algorithm
will be more efficient. If one wishes to have an actual random sample from the uniform
distribution with given marginals for which no reweighting is necessary (a sample which can
be made available by writing it to file as indicated in Section 5.4), then the Molloy-Reed
algorithm is the only option.

Another algorithm exists which is not implemented in ZO. This is a Markov chain Monte
Carlo algorithm proposed by Rao, Jana, and Bandyopadhyay (1996) and explained also by
Roberts (2000).
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5. Options

The previous section already discussed the choice between Simulate and Enumerate, and
mentioned the number of simulation runs that must be specified. But there are more
options.

5.1. Distributions

There is a choice between four types of matrix, or of graph:
1. Unrestricted: an arbitrary rectangular matrix – in other words, the adjacency matrix

of a bipartite graph.

2. Directed graph: a square matrix with structurally zero diagonal.

3. Undirected graph: a symmetric square matrix with structurally zero diagonal.

4. General: an arbitrary rectangular matrix with also an arbitrary set of structural zeros.
The previous three cases are obviously special cases of this general form. For this type
of matrix, it is required that the user specifies the set of structural zeros by means
of an adjacency matrix, where the ‘1’ entries indicate the locations of the structural
zeros.

The StOCNET interface will make a guess for this choice on the basis of the input provided
– on the basis of whether there are as many rows and columns, or not.

In all cases, the degrees are fixed. For undirected graphs there is only one vector of
degrees. For the other three types of matrix, where symmetry is not imposed, the in-
degrees as well as the out-degrees are fixed.

In addition, when the matrix specified is a directed or undirected graph, it is possible
to restrict the simulations or enumerations to connected graphs or digraphs. A graph is
connected if for every two vertices there is a path (a sequence of joined edges) connect-
ing them. For digraphs, the restriction is to weakly connected digraphs, which is defined
similarly but without regard for the directions of the arcs making up the path.
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An extra restriction can be made for directed graphs: it is possible to request that the
number of mutual dyads,

M =
∑
i<j

Xij Xji ,

is fixed. Note that the user may request a number of mutuals that is incompatible with the
given degree sequences. This compatibility is not always easy to verify. The enumeration
option will find out whether the degrees and the number of mutuals are compatible (in
case of incompatibility, it will find no matrices at all). The simulation option will find this
out only in extreme cases; in other cases it just keeps on trying, the number of attempts
increases more and more and the number of simulated matrices does not lift off...

5.2. Choices for statistics

For several statistics, the mean, variance, standard deviation, and cumulative distribution
function is calculated (exactly by Enumerate, by Monte Carlo approximation by Simulate).
This is done for a set of statistics; the user can choose between several sets. Each set of
statistics is called a version. The available statistics are different for Simulate and Enu-
merate, and also are different depending on whether the generated matrices are square (as
many rows as columns – this is always the case for graphs and digraphs) or non-square
rectangular.

Note that the output format of ZO is such that all statistics are treated as having integer
values, often bounded by the values 0 and 100.
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5.2.1. Statistics for Simulate

For square matrices, the following sets of statistics are available.
i. Version 1.

1. Number of mutual dyads as defined in (1);
for undirected graphs without the restriction to connected graphs, this is replaced
by the connectivity indicator (1 for connected, 0 for disconnected graphs).

2. Transitivity index (2) multiplied by 100;
3. Indicator of the arc from vertex 1 to vertex 2 (1 if the arc is present, 0 if it is

absent).

ii. Version 2.
For each vertex the eigenvector centrality defined in Section 2.1.4, multiplied by 100.
(The product is rounded to an integer value.)

iii. Version 3.
For each vertex the eigenvector centrality defined in Section 2.1.4, multiplied by 1,000.
(The product is rounded to an integer value.)
When the eigenvector centralities tend to be less than 0.1, version 3 will be more in-
formative (less information loss due to rounding) then version 2, since the cumulative
distribution function in the output file is shown only for values up to 100.

iv. Version 4.
1. Indicator of the arc from vertex 1 to vertex 1 (1 if the arc is present, 0 if it is

absent). (For graphs and digraphs, this always is 0).
2. Indicator of the arc from vertex 1 to vertex 2.
3. Number of matches between rows 1 and 2: this is the number of vertices which

have an incoming arc from vertex 1 as well as vertex 2; in matrix terminology,
the number of columns j such that there is a 1 entry in cells (1, j) as well as
(2, j). Columns j = 1 and 2 also are counted (of course, these columns do not
contribute for graphs and digraphs.)
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ix Version 9.
For directed graphs, the code 9 will calculate the statistics for version 1, but also
attempt to calculate the formula of Katz and Powell (1954, 1957) for the number of
digraphs with the given in- and out-degrees. It was mentioned in Section 2.2 that
there is a possiblity here that the program will run into an error.

For non-square matrices, the following sets of statistics are available.
i. Version 1.

1. Indicator of the arc from vertex 1 to vertex 1 (1 if the arc is present, 0 if it is
absent).

2. Indicator of the arc from vertex 1 to vertex 2.

3. Number of matches between rows 1 and 2 (defined as in option iv above).

ii. Version 2.
For each vertex the eigenvector centrality defined in Section 2.1.4, multiplied by 100.
(The product is rounded to an integer value.)

iii. Version 3.
For each vertex the eigenvector centrality defined in Section 2.1.4, multiplied by 1,000.
(The product is rounded to an integer value.)
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5.2.2. Statistics for Enumerate

For square matrices, the following sets of statistics are available.
i. Version 1.

1. Number of mutual dyads as defined in (1);
for undirected graphs without the restriction to connected graphs, this is replaced
by the connectivity indicator (1 for connected, 0 for disconnected graphs).

2. Number of transitive triplets Tr.

3. Number of intransitive triplets Intr.

4. Transitivity index (2) multiplied by 100.

ii. Version 2.
For each vertex the eigenvector centrality defined in Section 2.1.4, multiplied by 100.
(The product is rounded to an integer value.)

iii. Version 3.
1. Indicator of the arc from vertex 1 to vertex 1 (1 if the arc is present, 0 if it is

absent). (For graphs and digraphs, this always is 0).

2. Indicator of the arc from vertex 1 to vertex 2.

3. Number of matches between rows 1 and 2, defined as above.

For non-square matrices, the following sets of statistics are available.
i. Version 1.

1. Indicator of the arc from vertex 1 to vertex 1 (1 if the arc is present, 0 if it is
absent).

2. Indicator of the arc from vertex 1 to vertex 2.

3. Number of matches between rows 1 and 2 (see above).

4. Number of matches between columns 1 and 2.
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ii. Version 2.
For each vertex the eigenvector centrality defined in Section 2.1.4, multiplied by 100.
(The product is rounded to an integer value.)

5.3. Linear combinations of the triad census

In addition to the statistics mentioned above, in Simulate it is also possible to determine
the distributions of linear combinations of the triad census, as defined in Holland and
Leinhardt (1975) and described extensively in Wasserman and Faust (1994), Chapter 14.
This is meaningful only for digraphs, since for graphs under the U | Xi+ distribution, the
information in the triad census is equivalent to the number of transitive triads, which is
available already in the statistics presented in the previous section.

In Holland and Leinhardt (1975) the U |M,A,N distribution is considered for the triad
census. In ZO, of course, the triad census is considered under the U | Xi+ , X+i and the
U | Xi+ , X+i, M distributions. Mostly when testing propositions expressed by the triad
census, it is advisable to control for the dyad census M,A,N , or for more statistics – but
not for less. Therefore the U | Xi+ , X+i, M distribution will be in most cases more relevant
for testing linear combinations of the triad census than the U | Xi+ , X+i distribution (note
that the dyad count M,A,N is not a function of the degrees only, but it is a function of
the degrees together with M).

ZO calculates the number of triads of each of the 16 equivalence classes defined
in Holland and Leinhardt (1975) and also given, e.g., in Wasserman and Faust (1994).
The triad names are given in the usual way (a code starting with three digits indicating
the number of mutual, asymmetric, and null dyads in the triad; plus a letter if that is
required for identification). The user of ZO can calculate the number of occurrence of the
16 triads (the ‘triad census’) but also, if desired, linear combinations of the triad census.
The order in which the triads are given in the triad census is as given here. (The literature
mentioned gives the meanng of these codes.) When a linear combination of the triad census
is desired, the weights should be given according to this order. If a given number k of linear
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combinations is requested but no matrix of weights is supplied to ZO, then the numbers of
occurrences of the first k triads are calculated. (In other words, the default value for the
k’th weight vector is the k’th unit vector.)

1. 003
2. 012
3. 102
4. 021D
5. 021U
6. 021C
7. 111D
8. 111U Triad codes.
9. 030T
10. 030C
11. 201
12. 120D
13. 120U
14. 120C
15. 210
16. 300

For the linear combinations specified, the means and the covariance matrix is calculated.
In addition, the probability is calculated that the linear combination is at least as large as a
given threshold. This can be used for testing network propositions using linear combinations
of the triad census as test statistics, and the U | Xi+ , X+i or U | Xi+ , X+i, M distribution
as the null distribution.
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5.4. Writing all generated matrices to file

If desired, the user can write all generated matrices to a file. Note that this may lead to
very long files. The file is self-explaining. This can be useful, e.g., if you wish to check the
definition of the statistics: this file contains not only the generated matrices but also the
corresponding calculated statistics.

E.g., for the enumeration of directed graphs with 7 vertices and all degrees equal to 1,
the start of such a file is as follows. For obtaining this output, version 1 of the statistics
was used (see Section 5.2).

This file contains all found 0-1 matrices

with the desired row and column totals.

Mutual dyads are indicated by M.

Row totals : 1 1 1 1 1 1 1

Column totals : 1 1 1 1 1 1 1

Directed graph.

Following each matrix are the following function values:

1. Number of mutual dyads

2. # of transitive relations in triads

3. # of intransitive relations in triads

4. 100 * #trans / (#trans + #intrans)

1.

XM00000

MX00000

00XM000

00MX000

0000X10

00000X1

000010X

* 2.00 0.00 3.00 0.00
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2.

XM00000

MX00000

00XM000

00MX000

0000X01

00001X0

000001X

* 2.00 0.00 3.00 0.00

In all matrices, the letter M should be read as a 1 entry with the additional information
that it is part of a mutual dyad. The letter X stands for a structural zero. E.g., in the first
generated matrix it can easily be seen that each row and each column has one 1 entry, and
that there are two mutual dyads, as indicated also by the first mentioned function value.
Each set of function values is preceded by the symbol *.

For the simulation option, this file contains for every generated matrix one additional
piece of information. This is, up to a multiplicative constant, the inverse of the probability
of generating this particular matrix. Thus, each matrix x satisfying the given constraints
has a probability p(x) of being generated, and the number c/p(x) is given for some constant
c (c is independent of x). The reason for incorporating the number c is given in Snijders
(1991). If the user wishes to estimate the expected value of some function f(x) which is
not included in the statistics mentioned in Section 5.2, then this can be done as follows.
Denote the number to be estimated by

µ = Ef(X) ,

and the values c/p(x) by w(x) (interpreted as a weight). Then from the file with the
generated matrices, the user has to calculated the function f(x) for all matrices listed, and
estimate µ by

µ̂ =
∑
w(x) f(x)∑
w(x)

, (6)
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where the sums in numerator and denominator extend over all generated matrices x.
The start of the file with the generated matrices may be as follows (the precise values

depending on chance...).

This file contains all found 0-1 matrices

with the desired row and column totals.

Mutual dyads are indicated by M.

Row totals : 1 1 1 1 1 1 1

Column totals : 1 1 1 1 1 1 1

Directed graph.

Following each matrix are the following function values:

1. Number of mutual dyads

2. 100 * #trans / (#trans + #intrans)

3. Arc indicator from 1 to 2

After this follows a constant divided by the probability

for obtaining this matrix.

For unbiased estimation, weights must be used

that are proportional to these numbers.

1.

X000010

0X00100

01X0000

100X000

0010X00

00000X1

000100X

@ 0.00 0.00 0.00 0.98843815
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2.

X100000

0X01000

00X0M00

100X000

00M0X00

00000XM

00000MX

@ 2.00 0.00 1.00 0.77553903

Each set of function values is preceded by the symbol @. E.g., for the first generated
matrix, the number of mutual dyads is 0; 100 times the transitivity index Rtrans is 0; the
arc indicator x12 is 0; and the weight w(x) = c/p(x) is equal to 0.98843815.
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6. Zinput – Output

6.1. Input data

The main information needed by the program is the degrees; for an undirected graph this
is one degree vector, for the other (non-symmetric) options two degree vectors are required:
in-degrees (column sums) and out-degrees (row sums). The degrees can be given to ZO in
two ways: either as a full adjacency matrix from which ZO will calculate the degrees, or
as a file containing the in-degrees in the first line, and (for the non-symmetric options) the
out-degrees in the second line. For either way of giving the data, the data file must be an
ASCII file containing integer numbers separated by blanks (not by tabs). For the adjacency
matrix format, each row of the adjacency matrix must be terminated by a hard return.

Missing data are not allowed. In the adjacency matrix format, each positive entry in
the data file is converted to a 1 (presence of an arc), each non-positive entry to a 0 (absence
of an arc).

When using the StOCNET interface, the StOCNET program will automatically recognize
which of the two formats is being used and pass this information on to ZO. For those
executing ZO independently of StOCNET, Section 9 explains how ZO gets the information
about the format of the input data file.

If the general option is used (see Section 5.1), a file with the positions of the structural
zeros is also needed. This must be an adjacency matrix of the same dimensions as the
matrices to be generated; the 1 values in this matrix have to indicate the positions of the
structural zeros. It is read according to the same specifications as the adjacency input
matrix mentioned above.
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If linear combinations of triad counts are requested with other than unit weights (See
Section 5.3), then also a matrix is required with the weights. This must be a matrix with
as many lines as the number of requested linear combinations. Each line must contain 16
real numbers, separated by blanks, giving the weights of the 16 types of triad in the order
given in Section 5.3. After this, the line may contain a 17th number which is the critical
value for the linear combination. The probability that the linear combination is larger than
or equal to this critical value will also be estimated. It is allowed, however, that the line
ends immediately after the 16th number, in which case a default critical value of 1 is used,
or the observed value in the input graph (if a full adjacency matrix is given as input).

6.2. Output file

The output file is self-explaining. It is an ASCII file. The output is divided in sections
using the symbol @ followed by a number. The number indicates the sectioning level. The
name of the output file is pname.out, where pname is the project name. If all matrices are
written to file, then this is to a file named pname.prn. For both kinds of output file, if ZO
discovers that a file exists with this name, it will append the new output to the existing file.
If an option is chosen with many calculated statistics, intermediate results will be written
to a file named pname.pqr. This does not require the user’s attention.



ZO

The purpose of ZO

Operation of the program

Algorithms

Options

Zinput – Output

Examples

Parts and units

Basic information file

Programming . . .

References

Title Page

J I

Page 29 of 49

Go Back

Full Screen

Close

Quit

7. Examples

As a first example, consider a very small digraph: with 7 vertices and all in- and out-degrees
equal to 1. The output file of Enumerate for such an input data file (of which the degrees
are given in the file zo7dma.dat distributed with the ZO program) and with version 1 for
the evaluated statistics contains, among others, the following results.

@2

Enumeration results.

--------------------

Total number of matrices found 1854

@3

Number of mutual dyads

Mean 0.4984

Variance 0.4765

Standard deviation 0.6903

Outcome Number of matrices

0 1140

1 504

2 210

0.6250|

0.5000| XX

0.3750| XX

0.2500| XX XX

0.1250| XX XX

0.0000| XX XX XX

+------------

0 1 2
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Thus, there are 1854 digraphs having these in- and out-degrees; 1140 of them have no mutual
dyads, 504 have one, and 210 have two mutual dyads. The corresponding probabilities
for the distribution of the number of dyads are 1140/1854 = 0.615 for 0 mutual dyads,
504/1854 = 0.272 for 1 mutual dyad, and 210/1854 = 0.113 for 2 mutual dyads. These
three probabilities are indicated (roughly) in the simple histogram.

To check this with the outcomes of the simulation algorithm, the same data set can
be used for the Simulate option. With 1000 simulation runs carried out, I obtained the
following result for the number of mutual dyads.

@3

Number of mutual dyads

Estimated mean 0.5198 (standard error 0.0231 )

Estimated variance 0.4998

Estimated standard deviation 0.7069

0.6250|

0.5000| XX

0.3750| XX

0.2500| XX XX

0.1250| XX XX XX

0.0000| XX XX XX

+------------

0 1 2

Minimum value found 0; maximum 2 .

Estimated cumulative ( <= ) probabilities with standard errors.

0 1 2

0.6052 0.8749 1.0000

0.0159 0.0109 0.0000
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The simulated mean is about one standard error different from the exact mean obtained
from the enumeration, which is a reasonable deviation. The output of the simulation does
not give the estimated probabilities of each possible value, but the estimated cumulative
probabilities. The first cumulative probability is, of course, the same as the probability
of the value 0. Here also, the estimated value 0.6052 is about one standard error different
from the exact value 1140/1854 = 0.6149. The second cumulative probability is P{M ≤ 1},
estimated as 0.8749, with an exact value (1140 + 504)/1854 = 0.8867.

Now suppose that we would like to have the values precise up to about 0.001. This
would mean a standard error of about 0.0005. The standard error for the first cumulative
probability, 0.0159, is about 32 times too large. Since standard errors decrease proportion-
ally to the square root of sample size, the sample size should be about 322 ≈ 1,000 times
as big. With 1,000,000 runs (not more than a few minutes were required), the following
result was obtained.

@3

Number of mutual dyads

Estimated mean 0.4982 (standard error 0.0007 )

Estimated variance 0.4769

Estimated standard deviation 0.6906

0.6250|

0.5000| XX

0.3750| XX

0.2500| XX XX

0.1250| XX XX

0.0000| XX XX XX

+------------

0 1 2

Minimum value found 0; maximum 2 .
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Estimated cumulative ( <= ) probabilities with standard errors.

0 1 2

0.6152 0.8865 1.0000

0.0005 0.0003 0.0000

It can be verified that the standard errors are about 30 times as small, and the standard
errors of the cumulative probabilities are indeed 0.0005 and less. The errors are less than
0.001.

7.1. Test of reciprocity

In this and the following subsections, Krackhardt’s data set on friendships of high-tech
managers is used that is also used in Wasserman and Faust (1994) for the same questions.
Therefore, the reader is referred to this book (Section 13.8.3 for the test of reciprocity) for
more background information for this data set and these examples.

In the first place, a test for reciprocity is carried out by testing the number of mutual
dyads, M , in the U | Xi+ , X+i distribution. The observed number of mutual dyads is 23.
With 10,000 simulation runs, the following result was obtained.

@3

Number of mutual dyads

Estimated mean 14.2075 (standard error 0.0356 )

Estimated variance 3.6960

Estimated standard deviation 1.9225
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|

0.2100| X

| X

0.1800| X

| X X X

0.1500| X X X

| X X X X

0.1200| X X X X

| X X X X X

0.0900| X X X X X

| X X X X X X

0.0600| X X X X X X

| X X X X X X X

0.0300| X X X X X X X

| X X X X X X X X X

0.0000| X X X X X X X X X X X X X X X X

+--------------------------------

11 16 21

Minimum value found 7; maximum 22 .

Estimated cumulative ( <= ) probabilities with standard errors.

7 8 9 10 11 12 13 14 15 16

0.0001 0.0005 0.0067 0.0261 0.0744 0.1851 0.3571 0.5691 0.7453 0.8831

0.0001 0.0002 0.0020 0.0031 0.0052 0.0075 0.0092 0.0095 0.0083 0.0054

17 18 19 20 21 22

0.9611 0.9881 0.9967 0.9993 1.0000 1.0000

0.0029 0.0016 0.0008 0.0004 0.0000 0.0000

The observed number of 23 is so high under this null distribution, that such high values
did not even occur once in 10,000 simulations. It can be concluded that there is a very
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significant tendency toward reciprocity, given the in- and out-degrees. Incidentally, the
histogram shows that the null distribution of M has a shape rather resembling a normal
distribution.
(In Wasserman and Faust, p. 551, a somewhat lower value for the expected value of M was
found; this is a chance deviation, associated with the lower number of simulation runs used
there, in view of the more limited computing power available at that time.)

7.2. Test of transitivity

Next, it is tested in the same data set if there is a tendency toward transitivity. Given that
a strong tendency to reciprocity was found above, it makes sense to control not only for
the degrees but also for the number of mutual dyads. This means that the null distribution
will be the U | Xi+ , X+i, M distribution, with M = 23.

The transitivity index Rtrans of (2) for Krackhardt’s friendship data set is equal to 0.46
(note that ZO reports this value multiplied by 100, so 46).

Simulating the U | Xi+ , X+i, M with a value for M that is so unlikely under the
U | Xi+ , X+i distribution is a bit time-consuming, because the number of failed attempts
(see Section 4.2) may be quite large. In this case, more than 300 attempts were necessary on
average for generating one matrix with the required characteristics. Therefore the number
of runs was taken as 1000; however, it still took no more than a few minutes to generate
1000 matrices. The following result was obtained.

@3

100 * #trans / (#trans + #intrans) (rounded to integer)

Estimated mean 42.0593 (standard error 0.1554 )

Estimated variance 0.9270

Estimated standard deviation 0.9628
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0.7200|

| XX

0.6400| XX

| XX

0.5600| XX

| XX

0.4800| XX

| XX

0.4000| XX

| XX

0.3200| XX

| XX

0.2400| XX

| XX

0.1600| XX

| XX XX

0.0800| XX XX

| XX XX XX

0.0000| XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

+------------------------------------------------------------

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Minimum value found 35; maximum 49 .

Estimated cumulative ( <= ) probabilities with standard errors.

35 36 37 38 39 40 41 42 43 44

0.0000 0.0000 0.0016 0.0041 0.0155 0.0526 0.1280 0.8285 0.9496 0.9627

0.0000 0.0000 0.0013 0.0027 0.0117 0.0356 0.0789 0.1201 0.0431 0.0390

45 46 47 48 49

0.9990 0.9993 0.9999 1.0000 1.0000

0.0008 0.0007 0.0001 0.0000 0.0000
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The transitivity index Rtrans is strongly concentrated arond the value of 0.42. Value
of 0.46 or higher are very unlikely. Thus, this network has a strongly significant tendency
toward transitivity, when we control for the in-degrees, the out-degrees, and the number of
mutual dyads. The standard errors are small enough to warrant this conclusion.

It may seems a bit strange that the transitivity index has such a small standard devia-
tion. This is understandable, however, given that (1) the information that is held constant
(degrees and number of mutuals) is considerable; (2) the graph has a rather high density
so that there are a lot of potentially transitive triplets, and the law of large numbers then
leads to a small standard deviation for the fraction of transitive triplets among them (even
though the triplets are not statistically independent).

7.3. Triad census

Finally, the similarity/attraction hypothesis discussed in Holland and Leinhardt (1975)
and in Section 14.4 of Wasserman and Faust (1994) is tested for the same data set. This
hypothesis states that if two persons have a strong tie, understood here as a mutual tie,
then it is likely that they have similar relations to other (third) persons; in other words,
mutual closeness leads to a tendency toward structural equivalence with respect to outgoing
relations. Wasserman and Faust (1994, Section 14.4.2) indicate various configurations of ties
that express some aspect of this hypothesis. We focus on one of these, viz., the configuration
of four ties Xij = Xji = Xih = Xjh = 1. The similarity/attraction hypothesis entails that
this configuration should be observed more frequently than expected by chance, given the
number of mutual dyads and given the total number of ties. Holland and Leinhardt (1975)
and Wasserman and Faust (1994, Section 14.4.2) explain that this configuration occurs once
in the triads 120U and 210 and thrice in the triad 300, which implies the weight vector
(0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3). This configuration is indicated in the following figure.

As for most hypotheses tested by a linear combination of the triad census, it is most
meaningful here to control in any case for the dyad count – i.e., the numbers (M,A,N) of
mutual, asymmetric, and null dyads. Controlling only for the dyad count can be carried out
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Configuration: mutual friends agreeing

using the program Triads of Walker and Wasserman (1987).1 In this case, the observed linear
combination with these weights is 66, and the program Triads (with the changed weight
vector – see the footnote) gives the results that its expected value under the U | M,A,N
distribution is 24.77, the standard deviation is 5.22, and the resulting standardized test
statistic is τ = (66 − 24.77)/5.22 = 7.90. This statistic is to be tested in the standard
normal distribution, yielding a highly significant result. Thus, many more mutual friends
agree on both having the same third person as a friend than would be expected given the
dyad count.

It is also meaningful, however, to control not only for the dyad count but also for the
degrees. This will indicate whether the observed frequency of the configuration Xij =
Xji = Xih = Xjh = 1 is higher than expected by chance given the number of mutual dyads
and all in- and out-degrees. This requires for ZO that the U | Xi+ , X+i , M distribution
be used – in other words, not only the degrees but also the number of mutual dyads must
be fixed, just like in the preceding section. Like above, 1,000 simulation runs were used.
The results in the output file are as follows.

1This program, however, seems to contain an error as it produces the results for the transpose adjacency
matrix, i.e., for the graph with reversed directions of all arcs. This means that in the triad census, all triads
with a code U must be interchanged with those with a code D, in order to obtain the correct results. E.g.,
the weight vector used here must be presented to the Triads program as (0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3), to
give results for the untransposed matrix. Corresponding to this, the results presented in Wasserman and
Faust (1994) on pp. 574, 582, and 595-596 contain some errors.



ZO

The purpose of ZO

Operation of the program

Algorithms

Options

Zinput – Output

Examples

Parts and units

Basic information file

Programming . . .

References

Title Page

J I

Page 38 of 49

Go Back

Full Screen

Close

Quit

Critical values

66.0000

Estimated means (with standard errors) of linear combinations.

1

mean 61.7270

s.e. 2.3716

Covariance matrix of linear combinations

1

1 54.721814

Exceedance probabilities (p-values)

(i.e., probabilities that linear combinations are at least as large

as the critical values)

1

p-values 0.340

standard errors 0.161

(The index 1 used in various places refers to the number of the linear combination; if more
than one linear combination would have been requested, it would have counted further than
1.)

The observed linear combination is 66; this is used as the critical value. For the U |
Xi+ , X+i , M distribution, this output shows that the expected value is estimated as 61.73,
with standard error 2.37; and the standard deviation as

√
54.72 = 7.40, with the resulting

standardized test statistic τ = (66 − 61.73)/7.40 = 0.56. The ZO output also provides an
estimated p-value that does not rely on an approximation by a normal distribution, and
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which here is estimated as 0.34 with standard error 0.16. All these standard errors are
relatively large. This has to do with the extremely high value of M = 23 mutual dyads
for these in- and out-degrees. For such extreme values the simulation algorithm used in
ZO can lead to a large dispersion of the weights used for the estimation (see Section 4.2
and equation (6)) which leads to high standard errors. The best solution is to use more
simulation runs. To get standard errors that are approximately 10 times as small, 100
times as many simulation runs were carried out. For 100,000 runs the expected value
was estimated as 58.21, with standard error 0.52; the standard deviation was estimated as√

40.74 = 6.38, with the resulting standardized test statistic τ = (66− 58.21)/6.38 = 1.22.
The estimated p-value was 0.137 with standard error 0.026. The conclusion is that p > 0.05,
so the frequency of occurrence of this configuration is higher than expected given the degrees
and the number of mutual dyads, but not significantly so. The conclusion then is that the
frequency of the configuration “mutual friends agreeing on friendship with a third person”
cannot be explained by the number of mutual and asymmetric ties, but it can be explained
when also the in- and out-degrees are taken into account. It must be noted that especially
the out-degrees have a rather high dispersion (as is not unusual with self-reported ties), so
it might be the high dispersion of the out-degrees which is what makes this configuration
so much more likely under the U | Xi+ , X+i , M than under the U |M,A,N distribution.

Incidentally, it can be seen that increasing the number of runs by 100 decreased the
standard errors by a factor less than 10. The reason must be that the weights used for
the estimation in (6) are not only highly dispersed but also have a rather long-tailed dis-
tribution. This again indicates that this value of M is so extreme under the U | Xi+ , X+i

distribution that this data set is close to the limit of what this simulation algorithm can do
under the U | Xi+ , X+i , M distribution.
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Part II

Programmer’s manual

The programmer’s manual will not be important for most users. It is intended for those
who wish to run ZO outside of the StOCNET environment and to those who want to have
a look inside the source code.

The program consists of a basic computation part programmed by the author in Turbo
Pascal and Delphi 5; and the StOCNET windows shell, programmed by Peter Boer in Delphi,
with Mark Huisman (earlier Evelien Zeggelink) as the project leader (see Boer, Huisman,
Snijders, and Zeggelink, 2002). The computational part can be used both directly and from
the StOCNET shell. The StOCNET windows shell is much easier for data specification and
model definition.
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8. Parts and units

The calculations of the program are carried out by the executable files zo sim.exe and
zo enum.exe. which read the basic information file and executes the calculations accordingly.
No user interaction is required, although there are possibilities of early termination.

If you wish to run ZO outside of StOCNET, the project name must be given in the
command line, e.g.
zo zo20

if zo20 is the name of the project, and there exists a zo20.in file. This zo20 is called a

command line parameter. There are the following three ways to specify a command with
a command line parameter in Windows. The command line can be given at the DOS
prompt (in a Windows environment); it can be given in the Windows “Run” command (for
Windows 98 and higher); and it can be indicated in the “target” in the “properties” of a
shortcut.

The source code is divided into the following units.
For zo sim :

1. ZOS Form, which is the basic form;
2. ZOMat, which contains the data storage routines;
3. Simul, which contains the basic routines for simulating the 0-1 matrices;
4. FunctSim, which contains the basic functions for calculating the statistics of which

the distributions are determined;
5. Triads, containing procedures for calculating triad counts, a special type of statistics,

used in FunctSim.
6. Rand3, which is a short unit for random number generation;
7. ZOLib, which contains some utilities for use in zo sim and zo enum ;
8. ZOSimLib, which contains some utilities for use in zo sim , among others the data

input procedure;
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9. SimPlus, which contains a routine for postprocessing intermediate results if these are
too voluminous to be stored in memory.

For zo enum :
1. ZOE Form, which is the basic form;

2. Enum Cons, which contains some constant declarations;

3. Enum, which contains the basic routines for enumerating the 0-1 matrices;

4. FunctEn, which contains the basic functions for calculating the statistics of which the
distributions are determined;

5. Numbers, with two functions for directly calculating the number of 0-1 matrices with
given marginal sums, which are not used in the main enumeration algorithm and only
present for the possibility of checking enumeration results;

6. ZOLib, which contains some utilities for use in zo sim and zo enum ;

7. ZOELib, which contains some utilities for use in zo enum , among others the data
input procedure.
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9. Basic information file

The basic information file (named pname.in, where pname is the project name) is an ASCII
file which contains the commands for the computation part. If the program cannot find the
file pname.in, it will look for the file zo.in . The structure of the basic information file for
zo sim is equal to the structure for zo sim, plus some additional lines at the end.

After the required information, the lines are allowed to contain at least one blank and
after that more text, which can be used for helpful information. However, lines with names
of data files should not contain additional text.

The basic information file for zo enum must have the following lines (each line giving
information about one variable or filename). The suggested defaults are also given.

1. f , the number of rows.

2. g, the number of columns.

3. GraphMode, an integer number between 1 and 4:
1 for an f × g matrix without structural zeros, 2 for a digraph, 3 for a graph, 4 for
an f × g matrix with an arbitrary set of structural zeros.
Default GraphMode = 2.

4. WriteMode, a number 0 or 1:
1 if all produced matrices should be written to file, 0 otherwise.
Default WriteMode = 0.

5. FileMode, a number 0 or 1:
1 if the data file contains an adjacency matrix, 0 if it contains only two lines: first
the required row sums, then the required column sums.

6. The name of the data file.

7. ConnectedMode, a number 0 or 1:
1 if the extra requirement is made that the generated graphs should be connected (or
weakly connected for digraphs), 0 otherwise.
Default ConnectedMode = 0.
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8. Only for GraphMode = 2:
MutualMode, a number 0 or 1:
1 if the extra requirement is made that the generated graphs should have a given
number of mutual dyads, 0 otherwise.
Default MutualMode = 0.

9. Only for MutualMode = 1:
PrescribedMutuals, an integer number at least 0:
the prescribed number of mutual dyads.

10. Only for GraphMode = 4: optional:
StrucZeroFilename, the name of the file with an f×g adjacency matrix that indicates
which are the structural zeros.
If there is not a line with such a filename, it is assumed that there are no structural
zeros (which reduces option GraphMode = 4 to results equivalent to GraphMode =
2.)

11. FuncVersion, an integer number at least 1, maximum value depending on whether
zo enum or zo sim is used, and on whether f = g:
the version of the statistics used by the program.
Default FuncVersion = 1.

For zo sim , the following extra lines must also be given.
12. nrun, the number of simulation runs (at least 0). Default nrun = 10000.
13. numl, the number of linear combinations of triad counts that are to be calculated as

statistics. This has an effect only if FuncVersion = 1.
Default numl = 0.

14. Option, a number 1 or 2:
1 if standard weights for these linear combinations are used, 2 if the weights are to
be read from a file.
Default Option = 1.

15. Only for numl > 0, Option = 2:
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WeightFileName, the name of the file with the weights for the linear combinations of
the triad counts.
This file must contain numl lines, each line containing 16 real number, with an op-
tional 17th number which then is the critical value for which exceedance probabilities
of this linear combinations will also be determined.

A further difference is that for zo sim the value of GraphMode may also be 11, 12, or
13, indicating the same type of matrix as GraphMode−10, but now using the algorithm of
Molloy and Reed (1995) instead of that of Snijders (1991).

A possible basic information file for zo sim is

20

20

2

0

0

zo20.dat

0

0

2

1000

0

1

with the data file zo20.dat containing, e.g., the two lines

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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A possible basic information file for zo enum is

7

7

2

0

0

zo7.dat

0

0

2

with the data file zo7.dat given, e.g., by

2 2 2 2 2 1 1

1 1 2 2 2 2 2
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10. Programming additional statistics

For experienced Pascal or Delphi programmers it should not be too hard to include addi-
tional statistics for the calculations in ZO. For the Simulate option, this will require only to
change the FunctSim unit and recompile ZO. To retain the consistency in the operation of
the program and in the output, however, it will be important to change various procedures
in this unit in a consistent manner. The following procedures will require attention.

1. Func, the definition of the statistics. It uses the generated matrix as the variable mat
which is of the type Adjac defined in unit ZOMat. The arc variables are referred to as
mat(i,j).

2. Tex, which gives the text describing the statistic.

3. Numversion, the number of sets of statistics available for simulation; these are the
‘versions’ described in Section 5.2.

4. Numfunc, the number of statistics calculated within each of these sets.
If statistics are added to the program, either Numversion or Numfunc, or both, will have to
be changed.
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