
Manual for BLOCKS version 1.8
Tom A.B. Snijders

Krzysztof Nowicki ∗

June 23, 2007

Abstract

BLOCKS is a computer program that carries out the statistical estimation of models for
stochastic blockmodeling according to Nowicki and Snijders (2001). This manual gives in-
formation about BLOCKS version 1.8 (June, 2007).

∗We are grateful to Peter Boer for his cooperation in the development of the StOCNET and BLOCKS programs.
Authors’ addresses: Tom Snijders, ICS, Department of Sociology, Grote Rozenstraat 31, 9712 TG Groningen, The
Netherlands, t.a.b.snijders@ppsw.rug.nl; Krzysztof Nowicki, Department of Statistics, University of Lund, S-220
07 Lund, Sweden, krzysztof.nowicki@stat.lu.se .

1

mailto:t.a.b.snijders@ppsw.rug.nl
mailto:krzysztof.nowicki@stat.lu.se

Contents

1 BLOCKS 2
1.1 Differences with earlier versions . 2

2 Theory 5
2.1 The Bayesian approach . 9
2.2 The Gibbs sequence . 10
2.3 The number of classes . 11
2.4 Estimated probabilities . 13

3 Operation of the program 14

4 Project 15

5 Input data 16

6 Output files 17

7 Options 18
7.1 Advanced options . 19
7.2 Identified and non-identified models . 20

8 Getting started 21

9 Example: Kapferer’s Tailor Shop 23
9.1 Annotated output file . 25

10 Parts and units 56

11 Basic information file 57

12 Constants 61

13 References 62

2

1 BLOCKS

The program BLOCKS is designed for stochastic blockmodeling of relational data according to the
methods described in Nowicki & Snijders (2001). This article extends the earlier work presented
in Snijders and Nowicki (1997).

This manual gives information about the version, BLOCKS 1.8 (June 2007). The program was
programmed in Turbo Pascal / Delphi by Tom Snijders, and Peter Boer made the transition to
Delphi under Windows.

The program and this manual can be downloaded from the web site,
http://stat.gamma.rug.nl/snijders/socnet.htm/. The best way to run it is as part of the StOCNET
program collection (Boer, Huisman, Snijders, & Zeggelink, 2003), which can be downloaded from
http://stat.gamma.rug.nl/stocnet/. For the operation of StOCNET, the reader is referred to the
corresponding manual. If desired, BLOCKS can be operated also independently of StOCNET.

This manual consists of two parts: the user’s manual and the programmer’s manual. There are
two parallel pdf versions: blocks man s.pdf for screen viewing and blocks man p.pdf for printing.
They were made with the LATEX pdfscreen.sty package of C.V. Radhakrishan which made it possible,
e.g., to insert various hyperlinks within the manual. Both versions can be viewed and printed with
the Adobe Acrobat reader. This is the print version.

1.1 Differences with earlier versions

Version 1.8 (June 2007) has the following changes.
A somewhat longer lasting overdispersion is used when overdispersed burn-in is requested.
The .in file now requires a line with the random number seed, enabling the user to exactly
reproduce results obtained.
There are some small improvements in input and output.

Version 1.7 (September 2006) outputs Pajek (Batagelj & Mrvar, 2002) files of the estimated
coloring.

Version 1.6 (March 2004) differs from earlier versions in that the number of nodes now does
not have a fixed limit, in the way to obtain good starting values for the latent classes, and in the
choice of vertices differentiating well between the latent classes. In practice, the number of nodes is
limited by the computer’s memory and by numerical precision. The output will contain a message
if there are risks of unsatisfactory precision.

Versions 1.51 – 1.53 (July 2002) differed only in minor aspects.

3

Part I

User’s manual
The user’s manual gives the information for using BLOCKS. It is advisable also to consult the user’s
manual of StOCNET because normally the user will operate BLOCKS from within StOCNET.

2 Stochastic blockmodeling

Blockmodels are relational structure models which allow one to represent pairwise relationships
among social actors (individuals, organizations, countries, etc.). These relationships can be social
interactions such as friendship, acquaintance, collaboration, information flow, etc., or combinations
of such interactions. Various general introductions to blockmodeling can be found in the literature
on social networks, e.g., Wasserman and Faust (1994). The actors will also be called the vertices,
adhering to the usual graph-theoretic terminology.

In an extreme case, the actors can be grouped into classes in such a way that the classes
determine the relational pattern: actors in the same class are tied to others in exactly the same
way. In such a case, actors in the same class are said to be structurally equivalent (Lorrain and
White, 1971). This is of course rare, and the literature contains various proposals to express some
kind of approximate structural equivalence. (In addition, there is a different equivalence concept,
regular equivalence not treated in this manual, and for which we refer the reader to the literature
on social networks.)

A problem in modeling network data arises when it is unclear a priori which are the equivalent
groups. Sometimes a researcher has ideas about attributes (gender, age, etc.) that might define
approximately equivalent groups. But often the researcher does not wish to use prior ideas to form
the groups, and would like to infer from the observed relations what groupings there are which
best can be used to define the relational pattern. This is called posterior blockmodeling.

Stochastic blockmodeling (Holland, Laskey, and Leinhardt, 1983) is an approach to blockmod-
eling which, like other statistical models, assumes that the observed data are generated by some
probabilistic, or (which is the same) stochastic, mechanism and which defines the equivalence
within this stochastic model. Actors are stochastically equivalent if they have the same probability
distribution of their relations to other actors. E.g., there could be three types of actors, A, B
and C; actors of types A and B like to relate to actors of the other group (probability .5) but
not the own group (probability .1), actors of type C like to relate to other Cs (probability .5),
and the probability of ties between Cs on one hand and As or Bs on the other hand is rather low
(probability .2). Type A then is one group of equivalent actors, so is B, and so is C. Because of
the randomness of the resulting observed pattern, it may be hard to find out a posteriori who are
the As, the Bs and the Cs.

The method implemented in BLOCKS tries to do this, using the following approach.
1. Since this is about a posteriori blockmodeling, only the observed relations are used as data.

2. The model is about probabilities of relations between the various groups, so it is assumed
that there is random variability between the actually observed relations even if they are
relations of stochastically equivalent actors. The main conclusions of the method are about
the probabilities that actors belong to the same group, and about the probability distributions
of the relations.

3. The unobserved attribute defining the groups is referred to as the “latent class” or also,
arbitrarily, as the ‘color’. Thus, in the example above, A might be blue, B green, and C
purple. In the output, the colors are represented just by numbers (like 1, 2, 3). The number

4

of latent classes (or colors) is provisionally fixed by the user at one value or a sequence of
values. E.g., the user can request to investigate for 2, 3, or 4 groups how a pattern with this
number of groups would represent the observed network. Guidance is given about how to
determine the best number of groups.

4. In most cases, nothing is known a priori about the classes. We then say that the colors are
unidentified ; instead of A being blue, B green, and C purple, it could be just as well to call A
purple, B blue, and C green. This arbitrariness of the colors leads to some technical problems
treated in Nowicki and Snijders (2001). A consequence is that we do not get results of the
type “actor 1 is in group 4 with probability .8”, because group 4 is not identified. Rather,
results are of the type “actors 1 and 3 are in the same group with probability .8”.

5. Sometimes we can say that we know a priori that some actors don’t belong in the same
group. More specifically, we could say that, e.g., actor number 4 is in group 1, actor 7 is in
group 2, and actor 21 is in group 3. To be a bit more cautious we would say in the statistical
model that the probability of actor 4 being in group 1 is .95, and similarly for the other two
actors. Such an assumption would indeed identify the three groups, and we then say that we
have an identified model. The program allows this but in practice, it is rare to specify an
identified model.

6. To find the groups, the program uses random simulations, which is also called a Markov
chain Monte Carlo (MCMC) approach. The particular Monte Carlo approach used is Gibbs
sampling. One computation is called a Gibbs sequence. It is explained below what a Gibbs
sequence is. The simulations are a bit time-consuming, so you have to be patient. The
precision will be greater when you use more simulation iterations within each Gibbs sequence.
The randomness implies that results will be different every time you run the program. If the
stochastic blockmodel fits well, the differences will be very small. To check this, it is advised
to let the program make 2 or 3 similar calculations (the technical expression is that you
generate 2 or 3 independent Gibbs sequences) and see whether the results are close enough
to each other.

7. In addition to analyse the standard dichotomous (on/off) type of relation, it is also possible
to analyse relations with a larger numer of values. Ordinarily it is not advisable to analyse
relations with more than about 5 different values, however. If you have relations with more
values, it is better to recode them to a smaller set of values.

8. Since reciprocation is a basic phenomenon in social networks, the method uses the dyad, i.e.,
the two-way set of relations between two actors, as the basic relational unit.
For this purpose the data are recoded, using code numbers 1, 2, etc. These new codes are
called the new alphabet. E.g., consider two actors i and j, the relation from i to j being
denoted yij and the opposite relation denoted yji .
The code for the relation from i to j also depends on the relation from j to i. What is
recoded is really the dyad, i.e., the pair (yij , yji). If the relation is originally dichotomous,
represented by 0 and 1, four code numbers 1, 2, 3, and 4 are required. Symmetric relations
yij = yji will receive code 1 for yij = yji = 0 and code 2 for yij = yji = 1. Asymmetric
relations will receive codes 3 and 4: if yij = 0 and yji = 1 then yij will be recoded to 3 and
yji to 4. If the relation is dichotomous and two-sided (symmetric), then the codes 3 and 4
are not used.
If the original relation is not dichotomous but has more than 2 values, more codes will be
required. The recoding is mentioned in the output. This leads to a lot of code numbers, but
this representation by dyads gives a more faithful representation of the relational structure.
It may be noted that in recoded form, it is sufficient to know either the upper-diagonal or
the lower-diagonal half of the adjacency matrix, since one half determines the other half.

5

9. Missing data are allowed; the user just needs to indicate what is the code used for the missings
in the original data file. If there are missing data, then each whole dyad is considered either
missing or non-missing.

10. As a final result of the method, the program tries to get beyond the conclusions about the
probabilities that pairs of actors are in the same group, and actually tries to find groups of
actors who (probably) are in the same group. But it may be necessary to disregard some of
the actors, of whom the group identification is too ambiguous.

2.1 The Bayesian approach

The stochastic blockmodeling method in BLOCKS is a Bayesian statistical method. In the Bayesian
approach, all uncertainty about the conclusions of the statistical inference is expressed in proba-
bility statements about the model parameters. The main component of the stochastic blockmodel
(one might say: the main unknown parameter) is called the partition or coloration of the set of
actors, or the configuration of the class structure; this is the division of the set of all actors into
subsets of stochastically equivalent actors. These subsets are also called latent classes. This col-
oration is a priori unknown, and the purpose of the blockmodeling exercise is to get to know it. But
it will not become known with certainty; in the Bayesian approach, the uncertainty is expressed
by saying that we get to know the probability distribution of the coloration, more precisely, the
posterior probability distribution of the coloration given the network data.

2.2 The Gibbs sequence

This posterior distribution is estimated on the basis of a so-called Gibbs sequence. This is a
sequence of colorations, constructed by a chance mechanism devised so that, whatever the starting
point, the coloration eventually will approximate a sample from the posterior distribution of the
coloration given the network data. The number of colors (latent classes) is constant within one
Gibbs sequence (although in some steps there might be zero vertices in some of the classes). Every
step in the sequence is also called an iteration. When you run BLOCKS, the screen will show the
generated colorations by patterns of colored squares (the coloration is not shown for every step
in the sequence but only one in so many steps, because showing it for each step would make you
dizzy and the program slow). Since the sequentially generated colorations are (approximately) a
sample from the distribution, the probabilities can be inferred from averages of a long sequence.

The Gibbs sequence will need a start-up (some mechanics say a ‘burn-in’) period before it
has indeed converged to a sample from the posterior distribution. The problem is that there are
no definite guidelines about how long this start-up period needs to be. Therefore it is best to
take it pretty long. The user must specify the number of iterations for the start-up part of the
sequence; after this number of iterations it is assumed that convergence has taken place; the user
also specifies the number of iterations after this point, the so-called post-convergence iterations.
The parameters of the posterior distribution are estimated as averages over the post-convergence
iterations, so-called posterior means. In most cases, 10,000 to 100,000 iterations should suffice both
for the pre-convergence and the post-convergence number of iterations. If you are unsure whether
you had enough iterations, take the preferred number of latent classes and make a real long Gibbs
sequence to check that it gives the same answers as those obtained with a shorter sequence.

In one execution of BLOCKS, several Gibbs sequences can be constructed, because the number
of colors can assume several values from a minimum to a maximum value, and for each color it
is possible to make more than one Gibbs sequence. The several Gibbs sequences made for the
same color are replications of one another; if they yield approximately the same results, this gives
confidence in the outcomes.

6

2.3 The number of classes

After running BLOCKS for several values of the number of classes, or colors, say, 2 to 5, you have
to decide what is the best number of classes. This is a matter of fit and interpretability. For the
fit, two statistics are offered.

1. The extra information contained in observing the relations, if you would already know the
colors of the vertices. This is measured by the parameter Iy in Nowicki and Snijders (2001).
It is 0 if, the relation between any pair of vertices is fully determined by the two classes to
which they belong. The larger the information, the less the colors tell about the relations
between the vertices.

2. The clarity of the block structure. This is measured by the parameter Hx in Nowicki and
Snijders (2001). It is 0 if, for each pair of vertices, it is certain whether they have the same
color. It is 1 if every pair of vertices has a probability of .5 to have the same color – which
means there really is no block structure at all.

Both of these parameters are estimated in BLOCKS by their posterior means (like anything in the
Bayesian approach).

To choose the best number of classes, you compare the values of these statistics across the
numbers of classes, and the number of classes for which these parameters are smallest has the
best fit. It is quite common that both parameters lead to different conclusions, e.g., Hx might be
smallest for 3 and the information Iy for 5 classes. The interpretability of the results then is the
main consideration. Tentatively, we suggest that Hx gives more important indications than the
information Iy.

It may be helpful to give the mathematical formula for Hx. This is based on the matrix of
probabilities that two vertices have the same color, denoted πij . Hx is defined by

Hx =
4

n(n− 1)

∑
i 6=j

πij(1− πij) .

The block structure is presented in the output by the matrix of the πij , called in the output the
“Matrix of pairwise color equality”. Like other matrices of posterior probabilities, the probabilities
are indicated by the first digit after the decimal point, e.g., a 4 denotes a value at least 0.4 and
less than 0.5. The value 9 denotes a value at least 0.9. If there is an extremely clear-cut block
structure, then for all pairs of vertices the digit presented is either 0 – for vertex pairs of different
colors, πij < 0.1 – , or 9 – vertex pairs of the same color, πij ≥ 0.9. The formula shows that in
this case, Hx would be very close to 0. At the other extreme, if there is no block structure at all
then all πij would be close to 0.5, so all digits in the matrix would be 4 or 5, and Hx would be
almost 1.

2.4 Estimated probabilities

The stochastic blockmodel has two important parts: the division of the set of actors into latent
classes (the coloration), and the probability distribution of the relations within and between these
classes – which is analogous to what is called the image matrix in deterministic blockmodeling
procedures (see, e.g., Wasserman & Faust, 1994). The nonidentifiability mentioned in point 4 of
Section 2 poses problems here: since we cannot meaningfully talk about “class 1” and “class 2”,
we also cannot talk about “the relations between actors in classes 1 and 2”. There are several ways
out of this.

1. The method which stays closest with the stochastic blockmodel is to give conclusions about
the fitted probability distributions of relations between the vertices, rather than the classes.
This method is treated in Nowicki and Snijders (2001). The colorations are averaged out in

7

this approach. The output of BLOCKS gives the fitted probabilities for all relations in the
new ‘alphabet’.

2. Another method is to reduce the set of vertices to a smaller set for which it is pretty clear
how it should be partitioned into classes – i.e., a reduction to a subset of vertices for which
the coloration is not highly chance-dependent any more. This is done by throwing out the
vertices for which it is not clear what is the set of other vertices with whom they tend to be
in the same class.
In the output, this is referred to as “finding strictly separated classes”. The current version
of BLOCKS gives the fitted probabilities as well as the observed frequencies of relations
within and between these classes, because this comes closest to the well-known practice of
constructing an image matrix.

3. A third method is, if there are c classes, to choose c or c− 1 vertices that have a very small
probability to be in the same class. If for c = 3 these are, e.g., vertices 1, 4, and 11, then
one could define color 1, 2, 3 as the colors of vertices 1, 4, and 11, respectively, under the
condition that these vertices must have different colors.
The disadvantage of this method is that it may give too much influence to the vertices with
an ambivalent position.

3 Operation of the program

The program performs Gibbs sampling (single or multiple sequences). As explained in the preced-
ing section, each sequence has the following structure. First initial, ‘pre-convergence’ iterations
are performed. Then it is assumed that convergence has taken place and the post-convergence
iterations are used for calculating posterior means and standard deviations. You see on the screen
the iteration number and the coloration which changes continuously during the simulations.

The program can be interrupted in two ways. A complete stop is requested when you press
the Stop button. During the post-convergence iterations, you may restart the post-convergence
iterations in the current Gibbs sequence by pressing the Restart button. This can be done when you
doubt that the Gibbs sampler indeed converged by the moment that the indicated pre-convergence
number of iterations had transpired – but usually this will not be necessary.

The program writes the output to two files, as described below. What you seen on the screen
during the program’s operation is mainly for fun and to be convinced that something is happening.
You also see how far the calculations have progressed. For the results the screen doesn’t tell you
much, you have to look in the output file.

4 Project

The project consists of data and the specified options, possibly together with an output file. The
project is defined by a so-called basic information file. The project is identified by a project name,
which is the root name of the basic information file and the output files. The extension names are
.in for the basic information (input) file, .out for the main output file, and .pqr for the secondary
output file. E.g., if the project name is block, then the basic information file name is block.in,
and the output files produced have names block.out and block.pqr. The basic information file
is written and shown by StOCNET but it can also be read using any text editor which can handle
ASCII (text) data. The output files are shown by StOCNET but can also be read by any text
editor.

8

5 Input data

The name of the data file and the path must not contain blanks. Only characters with ASCII
numbers from 43 to 126 are allowed in the file name; this implies that all letters a - z, A - Z,
digits 0 - 9, and various characters including . and ~ and are permitted, but not some other
characters of which ¨ % & () ! # $ * are examples. This applies to the entire path, so e.g.
“Program Files” (with blank!) should not be used.

The input data file itself consists of a square adjacency matrix (see the example data files).
Values in each line must be separated by blanks. The values in the adjacency matrix are integers
from −cc to +cc, where cc is a value defined in the unit B CONS (see the programmer’s manual),
currently cc = 9. This allows to analyse relations which have more detail than the usual dichoto-
mous (“on/off”) relations. The values are treated as unordered categories. The diagonal values of
the square matrix must be present in the data file, but their values are disregarded by the program.

A missing value indicator must also be specified. Relations equal to this missing value indicator
are treated as missing data. If the relation from some actor i to another actor j is missing, then the
reverse relation (from j to i) also is disregarded (this is because the dyads are the unit of analysis).
If you have no missing data, use any value for the missing data indicator which is not present in
the data set. This missing value indicator may be outside the permitted data range (−cc to +cc)
– this is interpreted, of course, as a complete absence of missing data.

For internal use in the program, the data first are recoded to a new “alphabet”. This is described
in point 8 of Section 2 above. This alphabet is represented by numbers 1 to r where r = r0 + 2 r1,
r0 being the number of symmetric relations, and 2 r1 being the number of asymmetric relations. As
a result of the recoding, the upper diagonal part of the recoded matrix defines the lower diagonal
part of the recoded matrix (and vice versa). The recoded values are used internally in the program
and presented in the output.

6 Output files

Two output files are produced: pname.out and pname.pqr, where pname is the project name.
Both are ASCII files which can be read by any text editor. The first is the main output file and
presented in StOCNET. You only need to take a look at the second output file if you want to have
extra information about some secondary results mentioned in Nowicki and Snijders (2001), or if
you desire greater precision in the form of an extra decimal or standard errors.

The output is meant to be self-explanatory, given that you understand the statistical method.
The output is divided into sections using the symbol @ followed by a number. The number indicates
the sectioning level. E.g., major sections (prologue, output for a given number of colors) start with
@1, subsections (output of each of the multiple Gibbs sequences) start with @2, subsubsections
with @3, etc. (up to @6). Output produced by a new run of BLOCKS starts with @0. You can
use this symbol for dividing the output into pages or skipping to the next (sub)section.

In addition, an output file pname r.paj is created, which contains Pajek (Batagelj & Mrvar,
2002) files of the network, with the post-hoc obtained colorings as partitions of the node set. This
file is overwritten at each new run of BLOCKS!

9

7 Options

The options can be specified in StOCNET (or by editing the basic information file). The main
options are as follows.

1. The data set to be analysed.

2. The number of latent classes (or colors): indicate the minimum and maximum number of
latent classes for which you wish to get an analysis. (You may choose these to be equal.)

3. Number of iterations.
In Section 2.2, it is described that the Gibbs sequence consists of two parts. You have to
specify the number of iterations for the before-convergence and also for the after-convergence
part. Values between 10,000 and 100,000 usually are reasonable.

4. Number of Gibbs sequences.
As described in Section 2, it is advised to run more than one Gibbs sequence, as replications
of one another, to check if the results are stable. (If they are not, increasing the number of
iterations may help.) It is advised to have 3 Gibbs sequences, but in preliminary explorations
you could use just 1.

5. Identification.
It was mentioned in Section 2, and it is elaborated below in Section 7.2, that the latent
classes are not identified: in most cases, you cannot say “actor 3 is in class 1” although you
can say “actors 3 and 4 are in the same class”. This default situation is indicated by the
option ”no identification”. However, in some situations there is a priori information that can
be used for identification; see Section 7.2.

6. If within one project you are running BLOCKS repeatedly, a question is whether the output
produced earlier still is valuable. You have the choice between letting the newly produced
output overwrite the old output, or appending the new output to the old output.

7.1 Advanced options

In Section 5.2, Nowicki and Snijders (2001) mentions three options for improving convergence.
1. Start with a good (”optimal”) configuration of the latent classes. If this is not selected, then

the initial colorations are determined randomly.

2. Use overdispersed class configurations in the pre-convergence iterations.

3. Use overdispersed probabilities in the pre-convergence iterations.
The two overdispersion options lead to better “mixing” in the pre-convergence runs, which is
intended to bring the Gibbs sequence more quickly to a good class configuration.

The user can choose to employ these options or to leave them out. The default is that these
options are “on” (they will usually not have much influence, but they may help and they won’t
harm).

Another advanced option is the value of the concentration parameter. This defines the param-
eter T mentioned in Section 5 of Nowicki and Snijders (2001): the value of T is the concentration
parameter multiplied by the number of classes. The higher the concentration parameter, the more
preference there is for equally sized classes. If the concentration parameter is too low, there is a
risk that some of the classes will be so small that they do not contain any actors at all. The advice
is to choose a concentration parameter of 100, as a good medium value. This is the default value.

Finally, the random number seed can be determined by the user, which enables the user to
reproduce results exactly.

10

7.2 Identified and non-identified models

The user makes the choice between either working with a model that is non-identified (because the
color labels are arbitrarily ordered) or working with a model that is identified by prior probabilities
for the colors of some of the vertices.

There are two ways of specifying a model identification. The easiest way is to give, for each
color, a vertex that has this color with a high probability. If there are c colors, there can be given
c − 1 or c vertices that have a high prior probability of having a specific color. Specifically, this
high prior probability is taken as 0.95. The main interpretation is that the prior probability that
two or more of this set of color-identifying vertices have the same color, is very low. (The prior
probabilities are not chosen as 1.0, in order to leave open the possibility that the data override the
prior ideas.)

The more complicated way to identify the model is by giving prior color probabilities for a set
of vertices in the form of a k× c matrix of prior probabilities, where k is the number of identifying
vertices, which must be equal to c or c − 1, and c is the number of colors. This matrix has to
be given in the form of a text file containing a rectangular data matrix, where the numbers are
separated by blanks, all numbers are nonnegative, and all row sums are 1.0.

If you choose an identified model and also the option of starting with an “optimal” set of
initial colorings, then it is possible that the “optimal” colorings do not correspond to the prior
probabilities for the colors. Therefore, if you wish to use prior probabilities, choose random instead
of “optimal” initial colorings.

8 Getting started

Reading the user’s manual helps to get started, especially Section 2 which explains the basic
concepts of the operation and interpretation of this method.

It is best to start working with BLOCKS with a dichotomous adjacency matrix, corresponding
to the usual representation of a social network as a (directed or ubdirected) graph. Take a network
with no more than 50 actors to start with. As indicated in Section 5, the data must be presented in
the form of a square data matrix in ASCII (text) format, the entries in the columns being separated
by spaces. Choose 3 latent classes (i.e., the minimum and the maximum number of latent classes
both are 3), only one Gibbs sequence, and let there be 10,000 iterations before as well as after
convergence. Select the default “no identification” option.

With this specification, let the program run. It won’t take very long, and the screen shows
a bar which indicates how far the program is from finishing. After finishing, StOCNET takes
you automatically to the output file. Given your knowledge of Section 2, the output should be
understandable. The next section walks you through an example output file, to assist you with
the interpretation.

After having understood operating and interpreting the program for one choice of the number
of latent classes, select a range from 2 to 4 latent classes, and run the program again. Now you
will have to use Section 2.3 to decide on the most appropriate number of latent classes.

Finally, do the same thing for 3 Gibbs sequences. If, for a given number of colors, the results
of the three sequences are similar, it can be concluded that the program converged to a good
solution. If not, increase the number of iterations and try again. To compare the similarity of the
3 sequences, look mainly at the information and the clarity of the block structure expressed in Hx

(see Section 2.3), and at the matrix of pairwise color equality.

11

9 Example: Kapferer’s Tailor Shop

Block modelling is illustrated below by walking you through the output file using a data set collected
by Kapferer. He observed interactions in a tailor shop in Zambia over a period of ten months,
focusing on the changing patterns of alliance among n = 39 workers during extended negotiations
for higher wages. Data were recorded on two ocassions between which an abortive strike occurred
and they are available in Ucinet 5 (Borgatti, Everett, and Freeman, 1998). A second successful
strike occurred just after the second data set was collected.

In the example below, Kapferer’s data relating to friendship interactions (a directed relation),
for the second occasion, are analyzed using BLOCKS. Kapferer’s friendship and assistance data
together, for the first occasion, are analyzed in Nowicki and Snijders (2001). The rank orders of
the vertices in the Ucinet data set are used as vertex labels. The network is represented in the
graph below, which was drawn using Pajek (Batagelj & Mrvar, 2002).

In the original data set, the employees had been placed in the following occupational categories
in the order of their prestige: head tailor (worker number 19), cutter {16}, line 1 tailor {1− 3, 5−
7, 9, 11 − 14, 21, 24}, button machiner {25 − 26}, line 3 tailor {8, 15, 20, 22 − 23, 27 − 28}, ironer
{29, 33, 39} and cotton boy {30 − 32, 34 − 38}. An additional category was line 2 tailor, which
included employees {4, 10, 17− 18}.

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28 29

30

31

32

33

34 35
36

37

38

39
Pajek

12

9.1 Annotated output file

We present parts of the output file obtained for 3 colors. Note that since the MCMC analysis
depends on stochastic simulation, the results will differ slightly between runs. After the header
and a report about the chosen options, the report of the data input is as follows.

@1

Input of data file

Data read from file Kapff2.dat and reproduced on file kap2.PQR.

39 vertices

Set of symmetric relations is

1 (0, 0) (646 dyads)

2 (1, 1) (52 dyads)

Set of asymmetric relations is

3 (0, 1) (43 dyads)

and its mirrored counterpart

4 (1, 0) (43 dyads)

Total number of relations is 4.

Number of dyads with observed values is 741.

Number of dyads with missing values is 0.

Information calculated with natural logarithms.

Entropy of empirical dyad distribution = 0.47125

This gives the report of the recoding: the new alphabet is 1, 2, 3, 4, where
1 refers to a null dyad
2 refers to a symmetric tie
3 refers to the (0,1) asymmetric dyad,
4 refers to the (1,0) asymmetric dyad.
Since (0,1) and (1,0) dyads are each others’ mirror image, there are as many (0,1) as (1,0) dyads.
The total number of dyads is

(
39
2

)
= 741 = 646 + 52 + 43.

The entropy of the empirical dyad distribution, 0.47125, is what would be obtained for the
information Iy in the observations, if there were only 1 color, cf. formula (24) in Nowicki and
Snijders (2001). This value serves as a reference for the information values obtained later for more
than one color.

Some lines later follows the report of the colorations obtained in some of the iterations in the
Gibbs sequence. The colors for the 39 vertices are shown, together with the average information
in the observations for the colorations in the last so many (here: 400) iterations.

It can be seen from the information values that the warming up takes place during approxi-
mately the first 6,000 iterations: the information decreases from values higher than 0.5 to values
mostly between 0.40 and 0.41. Approximate stability of the information values and the colorations
seems to set in about iteration 6,000. Between iterations 2800 and 3200 we see a change in the
color labels 1, 2, 3, illustrating the arbitrariness (non-identification) of the labels.

@3

Iterations: values of some random variables

===

Before convergence is assumed

iter., Info. y, last x:

400 0.5564 111113111111111111111111111111113111113

13

800 0.4956 122223222211122123222222223222223222222

1200 0.4768 223131312232221211211112212111111211111

1600 0.4452 313232311133332312311223322111212311112

2000 0.4444 221313233311213133133331233333333333333

2400 0.4419 122323213321113211133332213333333333333

2800 0.4213 111313133121113133133331133333333133333

3200 0.4287 222121212232221211211222211111111111111

3600 0.4232 333131313323331311311113311111111311111

4000 0.4197 332121313323331231233113311333111311311

4400 0.4200 333131311323331311311113311111111311111

4800 0.4198 333131313323331311311113311111111111111

5200 0.4164 333131311123331311311113311111111111111

5600 0.4167 333131313323331311311113311111111111111

6000 0.4148 333131313323331311311113311111111311111

6400 0.4126 333131313323331311311113311111111311111

6800 0.4136 333131311123331311311113311111111311111

7200 0.4093 332121213123331311211112311111111111111

7600 0.4094 332121211123331311311112311111111111111

8000 0.4105 332121213323331313211111311111111111111

8400 0.4099 332121213123331311311112311111111111111

8800 0.4082 332121211323331311311112311111111111111

9200 0.4072 333131311123331211311113311111111111111

9600 0.4052 332121213123231311311112311111111311111

10000 0.4016 322121211123331311311112311111111111111

10400 0.4056 333131311123231211311112211111111311111

10800 0.4070 332121211323331311311112311111111111111

11200 0.4095 333131313123331311311113311111111311111

11600 0.4080 332121113123231311311112311111111111111

12000 0.4042 332121211123331211311112311111111211131

12400 0.4092 333131313123331311311113311111131311111

12800 0.4067 333131313123331311311113311111111111111

13200 0.4087 333131313323331311311113311111111111111

13600 0.4095 333131313123331311311113311111111311111

14000 0.4093 333131313123331311313113311111111111111

14400 0.4133 333131311123331311311133311111111331111

14800 0.4100 333131311323331311311113311111111111111

15200 0.4103 333131311121331311311113311111111311111

15600 0.4092 333131311323331311311113311111111111111

16000 0.4124 333131313123331311311113311111111311111

16400 0.4105 332121311123331211311113211111111311111

16800 0.4090 333131313323331311311113311111111311111

17200 0.4090 333131311123331311311113311111111311111

17600 0.4068 333131313123331311311113311111111111111

18000 0.4042 332121213323331311311112311111111331111

18400 0.4105 332121211123331311311112311111111111111

18800 0.4073 333131311123331311311113311111111111111

19200 0.4034 333131313123331311311113311111111311111

19600 0.4061 332121211123331311311112311111111211111

20000 0.4100 333131313323331311311113311113131331111

20000 runs before convergence was assumed.

After convergence is assumed

iteration i, Information y, last x:

14

400 0.4090 333131311323331311311113311111111111111

800 0.4084 333131313323331311311113311111111311111

1200 0.4048 333131313123331311311113311111111111111

1600 0.4078 333131313323331311311113311111111311111

2000 0.4105 333131313323331311311113311111111111111

2400 0.4070 333131311323331311311113311111111111111

2800 0.4063 333131311323331211311113311111111111111

3200 0.4083 332121213323331311311112311111111311111

3600 0.4060 332121211123331211311113311111111111111

4000 0.4101 332121211323331211311112311111111111111

4400 0.4111 222121211132221211211112211111111111111

4800 0.4065 222121212232221211211112211111111211211

5200 0.4050 223131311132221211211113211111111311111

5600 0.4044 222121211232221211211112211111111211111

6000 0.4090 222121212132221211211112211111111211111

6400 0.4085 222121211132221211211112211111111111111

6800 0.4084 222121212232221211211112211111111211111

7200 0.4089 222121212232221211211112211111111221111

7600 0.4095 222121211232221211211112211111111111111

8000 0.4069 222121211132221211211112211111111211111

8400 0.4075 223131312132221211211112211111111111111

8800 0.4135 222121211232221211211112211111111211111

9200 0.4109 222121212232221211211112211111111211111

9600 0.4123 222121211132221211211112211111111211111

10000 0.4080 223131311132221211211112211111111111111

10400 0.4079 222121211132221211211112211111111211111

10800 0.4137 222121211132221311211112211211111111111

11200 0.4096 222121212232221311211212211111111111111

11600 0.4088 223131312232221221211112211211111111111

12000 0.4123 333131311133331311322112311122121211211

12400 0.4082 333131311123331311311113311111111111111

12800 0.4081 333131311123331311311113311111111311111

13200 0.4064 333131313323331311311113311111111111111

13600 0.4056 333131313123331311311113311111111111111

14000 0.4101 333131311123331311311113311111111311111

14400 0.4090 333131311123331311311113311111111311111

14800 0.4091 333131313123331311311113311111111111111

15200 0.4067 333131313323331311311113311111111311111

15600 0.4116 332121313323331211331113211313131211311

16000 0.4098 333131311123331311311113311111111311111

16400 0.4111 333131313323331311313113311111111311111

16800 0.4067 332121213123331311311112311111111111111

17200 0.4037 332121213323331311311112311111111111111

17600 0.4062 332121313123331311311112311113111311111

18000 0.4134 333131313323331311311113311111111311111

18400 0.4099 333131313123331211313113311111111111111

18800 0.4089 333131311123331311311113311111111111111

19200 0.4053 332121311123331311311112311111111311111

19600 0.4085 333131311323331311311113311111111311111

20000 0.4051 332121313123331311311113311111111111111

After assuming convergence, 20000 runs for estimating posterior distribution.

After this point come the results. (Incidentally, we see several switches between color labels 2 and
3.)

15

@3

Results

=======

Information y : 0.4084

A new ranking of the vertices was determined to bring out the block structure.

New ranking is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

. . . 28 29 30 31 32 33 34 35 36 37 38 39

1 2 3 5 7 12 13 14 16 19 24 25 4 6 8 9 10 15 17 18 20 21 22 23 26 27 28

. . . 29 30 31 32 33 34 35 36 37 38 39 11

The new ranking is based on the matrix of pairwise color equality (which follows below), and is
determined by a heuristic that tries to obtain a clearly visible block structure. To evaluate this
new order visually, the program presents the adjacency matix (in the new codes) using this vertex
order. The first two lines for the next matrix (and all presented square matrices below) give the
original vertex numbers, with the first line presenting the factors of 10 and the second line the
units.

Recoded observed adjacency matrix in new ranking is as follows:

1111122 11112222222233333333331

123572346945468905780123678901234567891

1 42411111111111111111411111111111111112

2 3 1213113114111111111111114111114111111

3 21 221222311111211111411112111111111112

5 322 22112111111111214111111411111111112

7 1122 2121311111121111111111111112111112

12 14122 111141111111111111111111111111112

13 112111 41211111111111111111111111114112

14 1121213 1124111111111111111111111111112

16 14221111 121111411411211111441111114111

19 114141211 43111111111111114411111111112

24 1111131223 1113111111111111141212111112

25 13111113141 111111111111111414111444111

4 111111111111 12111111111112111111111111

6 1111111111111 1111111111111111121111111

8 11111111114121 111221111111111111111111

9 112111113111111 11111111111111111111112

10 1111211111111111 1111111111111111111112

15 11111111111111111 111112111211111111111

17 111211113111112111 21111111111111111111

18 1111111111111121112 1111111111111111111

20 11131111111111111111 111111111111112113

21 313111112111111111111 11111211111111111

22 1111111111111111111111 3111111111111113

23 11111111111111111211114 111111111111111

26 111111111111111111111111 11111111111111

27 1111111111111111111111111 1111111111111

28 13211111131121111111111111 111111111113

29 111311113313111112111211111 11111111113

30 1111111131311111111111111111 1212111113

31 11111111111311111111111111111 111121111

32 111111111121111111111111111121 12112113

33 1111111111111211111111111111111 1111121

16

34 13112111112111111111111111112121 211112

35 111111111113111111111111111111112 11111

36 1111111111131111111111111111121111 1113

37 11111131311311111111211111111121111 113

38 111111111111111111111111111111111111 13

39 1111111111111111111111111111111211111 1

11 21222222122111122111414111444141214441

The block structure shows that vertices 1 – 3, 5, 7, 12 – 14, 16, 19, 24, 25, tend to belong to the
same class, (now labeled group 1), and vertices 4, 6, 8–10, 15, 17, 18, 20– 23, 26 – 33, 35 – 39, and
(less evidently) 34 also belong to one class (group 2). Vertex 11 is a class of its own: group 3.

Comparing this to the occupational categories mentioned earlier, it can be concluded that the
a posteriori classes obtained by our analysis have clearly different occupational profiles. Group 1
consists of high prestige workers while group 2 mainly those with lower prestige.

We use the word ‘group’ rather than ‘class’ to indicate the provisional groups of vertices meant
to approximate the latent classes. In statistical terminology, we could say that the groups are
estimates for the classes.

The adjacency matrix above shows that group 1 is especially cohesive: many codes 2, 3, and 4,
corresponding to asymmetric and symmetric ties. Group 2 has few relations in general: many codes
1, both within group 2 and with group 1. Group 3, the single vertex 11, is involved in many ties; this
vertex has relatively many symmetric ties (code 2) with group 1 and sends many unreciprocated
ties (code 4) to group 2. This visual inspection is elaborated in the following matrices. In all
the matrices of probabilities, like the following one, the probabilities are represented by their first
decimal. Thus, values p in the range 0.0 ≤ p < 0.1 are represented by 0, the range 0.1 ≤ p < 0.2
by 1, etc., and the range 0.9 ≤ p ≤ 1.0 by 9.

The following symmetric matrix represents the estimated values for πij , the probabilities that
two vertices i and j have the same color. In a well fitting blockmodel, if the new ranking is appro-
priate, this matrix should show a block structure with diagonal blocks of high values (preferably
8 and 9) and low non-diagonal values (preferably 0 and 1). The following matrix indeed conforms
to this pattern, with the 3 groups indicated above, except that actors 9, 10, and 34 do not fit very
well in their groups. They are outliers that could belong to group 1 or group 2 but do not conform
well to either of those groups.

17

@4

Matrix of pairwise color equality

=================================

1111122 11112222222233333333331

123572346945468905780123678901234567891

1 96779998989000430000000000000004000000

2 9 6779998989000430000100000000004000000

3 66 996777787000320000000000000004000004

5 779 97777797000320000000000000004000003

7 7799 7877797000320000000000000004000003

12 99677 998989000430000100000000004000000

13 997789 98989000430000000000000004000000

14 9977799 8989000430000100001000004000000

16 88777888 879000430000000000000004000002

19 997779998 89000430000000000000004000000

24 8889988878 8000330000100000000004000002

25 99777999998 000430000000000000004000001

4 000000000000 99679999999999999995999990

6 0000000000009 9679999999999999995999990

8 00000000000099 669999999999999995999990
9 443334444434666 66666666666666665666660

10 3322233333337766 7777676777777775777770

15 00000000000099967 999999999999995999990

17 000000000000999679 99999999999995999990

18 0000000000009996799 9999999999995999990

20 00000000000099967999 999999999995999990

21 010001010010999669999 99999999995999990

22 0000000000009996799999 9999999995999990

23 00000000000099966999999 999999995999990

26 000000000000999679999999 99999995999990

27 0000000000009996799999999 9999995999990

28 00000001000099967999999999 999995999990

29 000000000000999679999999999 99995999990

30 0000000000009996799999999999 9996999990

31 00000000000099967999999999999 995999990

32 000000000000999679999999999999 96999990

33 0000000000009996799999999999999 5999990

34 44444444444455555555555555556565 555550

35 000000000000999679999999999999995 99990

36 0000000000009996799999999999999959 9990

37 00000000000099967999999999999999599 990

38 000000000000999679999999999999995999 90

39 0000000000009996799999999999999959999 0

11 00433000202100000000000000000000000000

Average of pairwise = 0.4851 .

H_x = Average of 4*pairwise*(1-pairwise) = 0.2553 .

(Given the first average, H_x must be between 0 and 0.9991).

The clarity of the block structure is given by Hx = 0.2553. This always is a value between 0 and
1. Given that the average of the πij is 0.485, the value of 1.0 could not really be attained, but
the maximum value for Hx – in case of a worthless block structure – is 0.9991. In this case the
maximum is not appreciably less than 1.0.

Best separated vertices for identifying the 3 classes:

18

39

11 (errors 0.0000)

2 (errors 0.0000).

If one would want to indicate the vertices that most clearly belong to three different classes (cf.
Point 3 in Section 2.4), then the best choice would be 39, 11, and 2; the probability that they are
not all in different classes is 0.0000, rounded to 4 decimal places.

By now we have an impression of the three classes (one of them a quite small one) that de-
termine, to a great deal, the probabilities of the relations between the actors. But what are the
corresponding probabilities? In Section 2.4 we already saw that these probabilities can only be
expressed in a slightly indirect way.

The first method was treated in point 1 in Section 2.4 and the results are given in the next
part of the output. This indicates, within the current 3-class model, the fitted probabilities of the
relation types between the vertices. The first matrix gives (again, represented by the first decimal)
the probabilities of the relation type with code 1, which corresponds to a null (0, 0) dyad.

@4

Probabilities of relation types between vertices

==

Probabilities of relation type 1 = (0, 0) between vertices

1111122 11112222222233333333331

123572346945468905780123678901234567891

1 76667776766999889999999999999998999993

2 7 6667776766999889999999999999998999993

3 66 556665656999789999999999999997999993

5 665 56666666999889999999999999997999993

7 6655 6666666999889999999999999997999993

12 77666 776766999889999999999999998999993

13 776667 76666999889999999999999998999993

14 7766677 6766999889999999999999998999993

16 66566666 666999889999999999999998999993

19 776667676 66999889999999999999998999993

24 6656666666 6999889999999999999998999993

25 66666666666 999889999999999999998999993

4 999999999999 99999999999999999999999996

6 9999999999999 9999999999999999999999996

8 99999999999999 999999999999999999999996

9 887888888888999 99999999999999999999995

10 8888888888889999 9999999999999999999995

15 99999999999999999 999999999999999999996

17 999999999999999999 99999999999999999996

18 9999999999999999999 9999999999999999996

20 99999999999999999999 999999999999999996

21 999999999999999999999 99999999999999996

22 9999999999999999999999 9999999999999996

23 99999999999999999999999 999999999999996
26 999999999999999999999999 99999999999996

27 9999999999999999999999999 9999999999996

28 99999999999999999999999999 999999999996

29 999999999999999999999999999 99999999996

30 9999999999999999999999999999 9999999996

31 99999999999999999999999999999 999999996

32 999999999999999999999999999999 99999996

19

33 9999999999999999999999999999999 9999996

34 88777888888899999999999999999999 999995

35 999999999999999999999999999999999 99996

36 9999999999999999999999999999999999 9996

37 99999999999999999999999999999999999 996

38 999999999999999999999999999999999999 96

39 9999999999999999999999999999999999999 6

11 33333333333366655666666666666666566666

Within the first group 1-25 of vertices, the probabilities of a null dyad are between .5 and .8. For
the second group 4-39 they are higher, mostly over .9, both within the group and with the first
group. Actor 11 has probabilities about .3 of a null dyad with the first group, and about .6 of a
null dyad with the second group.

The second matrix gives the probabilities of the relation type with code 2, corresponding to a
mutual (1, 1) dyad.

Probabilities of relation type 2 = (1, 1) between vertices

1111122 11112222222233333333331

123572346945468905780123678901234567891

1 23322222222000110000000000000001000005

2 2 3322222222000110000000000000001000005

3 33 333333333000110000000001000001000006

5 333 33333333000110000000000000001000006

7 2233 2223232000110000000000000001000006

12 22332 222222000110000000000000001000005

13 223322 22222000110000000000000001000005

14 2233222 2222000110000000000000001000005

16 22333222 232000110000000000000001000005

19 223322222 22000110000000000000001000005

24 2233322232 2000110000000000000001000006

25 22332222222 000110000000000000001000005

4 000000000000 11001111111111111110111111

6 0000000000001 1001111111111111110111111

8 00000000000011 001111111111111110111111

9 111111111111000 10000000000000001000003

10 1111111111110001 0000000000000001000002

15 00000000000011100 111111111111110111111

17 000000000000111001 11111111111110111111

18 0000000000001110011 1111111111110111111

20 00000000000011100111 111111111110111111

21 000000000000111001111 11111111110111111

22 0000000000001110011111 1111111110111111

23 00000000000011100111111 111111110111111

26 000000000000111001111111 11111110111111

27 0000000000001110011111111 1111110111111

28 00100000000011100111111111 111110111111
29 000000000000111001111111111 11110111111

30 0000000000001110011111111111 1110111111

31 00000000000011100111111111111 110111111

32 000000000000111001111111111111 10111111

33 0000000000001110011111111111111 0111111

34 11111111111100011000000000000000 000003

35 000000000000111001111111111111110 11111

36 0000000000001110011111111111111101 1111

20

37 00000000000011100111111111111111011 111

38 000000000000111001111111111111110111 11

39 0000000000001110011111111111111101111 1

11 55666555556511132111111111111111311111

The matrix above shows that a mutual dyad (1,1) (code 2) is rare: the probabilities are between
.2 and .4 within the first group 1-25 of vertices, less than .2 for all others except for actor 11 who
has probabilities between .5 and .7 for mutual ties with actors in the first group.

The next two matrices in the output show similar results for the asymmetric relation types
(0,1) and its counterpart (1,0). The first is reproduced below. It shows that the probability of
an asymmetric dyad is between .1 and .2 within the first group (first digit 1); the probability of
a (0,1) dyad where the 0 is from the second group to the first, and the 1 from the first to the
second group, is between .1 and .2; an asymmetric dyad in the opposite direction between vertices
in groups 1 and 2 has a probability less than .1; and within group 2 the probability also is less
than .1. This contrasts with the probability of a mutual tie within group 1, which is between .1
and .2 (see the preceding matrix).

Probabilities of relation type 3 = (0, 1) between vertices

1111122 11112222222233333333331

123572346945468905780123678901234567891

1 11111111111000000000000000000000000001

2 1 1111111111000000000000000000000000001

3 11 111111111000000000000000000000000001

5 111 11111111000000000000000000000000001

7 1111 1111111000000000000000000000000001

12 11111 111111000000000000000000000000001

13 111111 11111000000000000000000000000001

14 1111111 1111000000000000000000000000001

16 11111111 111000000000000000000000000001

19 111111111 11000000000000000000000000001

24 1111111111 1000000000000000000000000001

25 11111111111 000000000000000000000000001

4 111111111111 00000000000000000000000003

6 1111111111110 0000000000000000000000003

8 11111111111100 000000000000000000000003

9 111111111111000 00000000000000000000002

10 1111111111110000 0000000000000000000002

15 11111111111100000 000000000000000000003

17 111111111111000000 00000000000000000003

18 1111111111110000000 0000000000000000003

20 11111111111100000000 000000000000000003

21 111111111111000000000 00000000000000003

22 1111111111110000000000 0000000000000003

23 11111111111100000000000 000000000000002

26 111111111111000000000000 00000000000003

27 1111111111110000000000000 0000000000003

28 11111111111100000000000000 000000000003

29 111111111111000000000000000 00000000003

30 1111111111110000000000000000 0000000003

31 11111111111100000000000000000 000000003

32 111111111111000000000000000000 00000003

33 1111111111110000000000000000000 0000003

34 11111111111100000000000000000000 000002

21

35 111111111111000000000000000000000 00003

36 1111111111110000000000000000000000 0003

37 11111111111100000000000000000000000 003

38 111111111111000000000000000000000000 03

39 1111111111110000000000000000000000000 3

11 11111111111100000000000000000000000000

Finally, the output elaborates point 2 in Section 2.4. This means that the vertices with an
ambiguous position are thrown out, the resulting clear class structure is presented (thus the latent
classes are observed - or, rather, estimated), and the image matrix for this block structure is
presented. Since the units are dyads rather than single relations, the image matrix really consists
of several matrices.

@4

Finding strictly separated classes.

===================================

Vertices now can be thrown out because they are not compatible

with a partition of vertices into colors.

The following vertices are thrown out: 34 9 .

Overall maximum pairwise value for vertices in different classes is 0.416

Overall minimum pairwise value for vertices in the same class is 0.568

This analysis starts with the group structure discussed earlier that is apparent from the ordering
and the matrix of pairwise color equality, but with the two worst fitting vertices disregarded, these
being 9 and 34. The groups then are
group 1: 1-3, 5, 7, 12-14, 16, 19, 24, 25
group 2: 4, 6, 8, 10, 15, 17, 18, 20-23, 26-33, 35-39
group 3: the single vertex 11.

The maximum probability πij that two vertices in different groups yet have the same color (are in
the same latent class) is 0.416, and the minimum probability that two vertices in the same group
have the same color is 0.568. This shows that the groups are not very convincing estimates for the
latent classes. The output immediately following elaborates the class structure implied by these 3
groups. We skip this here, because a similar but more interesting part of the output follows below.

Furhter ambiguous vertices now are thrown out. The result is as follows.

@5

Reduced vertex set

The following vertices were thrown out because of poor fit in the block structure:

9 10 11 34 .

Overall maximum pairwise value for vertices in different classes is 0.065

Overall minimum pairwise value for vertices in the same class is 0.683

Classes now are labeled 1 to 2.

At this point, the program finds that the remaining groups are well enough separated, because the
minimum probability πij that two vertices in the same group have the same color exceeds by more
than 0.6 the maximum probability that two vertices in different groups yet have the same color.
(The difference here is 0.683−0.065 = 0.618.) To some extent, the baby has been thrown out with

22

the bathwater, because vertex 11 with its special role was thrown out. This reflects that, although
in some sense this vertex defines a class on its own, it also had a non-negligible probability of
belonging to group 1.

There follows a table indicating how well the vertices belong in the current group structure and
how much this would improve if any given vertex were thrown out. We present only the table in
the new order of the vertices.

Vertices, as far as not thrown out, with their class number,

their maximum pairwise value for vertices in a different class,

and their minimum pairwise value for vertices in the same class;

and, if this vertex were to be deleted:

the overall maximum pairwise value for vertices in different classes,

and the overall minimum pairwise value for vertices in the same class:

.....................................

In new ranking:

1 1 0.056 0.686 0.065 0.683

2 1 0.056 0.683 0.065 0.685

3 1 0.051 0.683 0.065 0.729

5 1 0.046 0.729 0.065 0.683

7 1 0.058 0.768 0.065 0.683

12 1 0.056 0.685 0.065 0.683

13 1 0.054 0.691 0.065 0.683

14 1 0.054 0.693 0.065 0.683

16 1 0.039 0.711 0.065 0.683

19 1 0.051 0.692 0.065 0.683

24 1 0.065 0.763 0.058 0.683

25 1 0.044 0.692 0.065 0.683
4 2 0.018 0.945 0.065 0.683

6 2 0.017 0.946 0.065 0.683

8 2 0.028 0.933 0.065 0.683

9 out

10 out

15 2 0.019 0.945 0.065 0.683

17 2 0.024 0.940 0.065 0.683

18 2 0.018 0.944 0.065 0.683

20 2 0.017 0.947 0.065 0.683

21 2 0.065 0.909 0.049 0.683

22 2 0.021 0.939 0.065 0.683

23 2 0.049 0.909 0.065 0.683

26 2 0.018 0.942 0.065 0.683

27 2 0.017 0.942 0.065 0.683

28 2 0.043 0.922 0.065 0.683

29 2 0.027 0.949 0.065 0.683

30 2 0.034 0.934 0.065 0.683

31 2 0.018 0.946 0.065 0.683

32 2 0.034 0.927 0.065 0.683

33 2 0.016 0.946 0.065 0.683

34 out

35 2 0.034 0.928 0.065 0.683

36 2 0.017 0.946 0.065 0.683

37 2 0.021 0.943 0.065 0.683

38 2 0.016 0.946 0.065 0.683

39 2 0.017 0.946 0.065 0.683

11 out

23

The low values in the column “maximum pairwise in different classes” show that in this class
structure, the groups 1 and 2 really are different. The column “minimum pairwise in the same
class” shows that group 2 is very homogenous (all values larger than 0.9) but group 1 is less so
(values between .68 and .77).

Next the adjacency matrix in recoded and reordered form is shown again, now with blanks for
the deleted vertices and with rows of dots for the separation between the groups.

Recoded adjacency matrix with block structure :

1111122. 11112222222233333333331

123572346945.468905780123678901234567891

1 42411111111.111 111141111111111 11111

2 3 1213113114.111 111111111411111 11111

3 21 221222311.111 111141111211111 11111

5 322 22112111.111 121411111141111 11111

7 1122 2121311.111 111111111111111 11111

12 14122 111141.111 111111111111111 11111

13 112111 41211.111 111111111111111 11411

14 1121213 1124.111 111111111111111 11111

16 14221111 121.111 141121111144111 11411

19 114141211 43.111 111111111441111 11111

24 1111131223 1.113 111111111114121 11111

25 13111113141 .111 111111111141411 44411

..

4 111111111111. 12 111111111211111 11111

6 111111111111.1 1 111111111111112 11111

8 111111111141.21 122111111111111 11111

9

10

15 111111111111.111 11111211121111 11111

17 111211113111.112 1 2111111111111 11111

18 111111111111.112 12 111111111111 11111

20 111311111111.111 111 11111111111 11211
21 313111112111.111 1111 1111121111 11111

22 111111111111.111 11111 311111111 11111

23 111111111111.111 211114 11111111 11111

26 111111111111.111 1111111 1111111 11111

27 111111111111.111 11111111 111111 11111

28 132111111311.211 111111111 11111 11111

29 111311113313.111 2111211111 1111 11111

30 111111113131.111 11111111111 121 11111

31 111111111113.111 111111111111 11 12111

32 111111111121.111 1111111111121 1 11211

33 111111111111.121 11111111111111 11112

34

35 111111111113.111 111111111111111 1111

36 111111111113.111 111111111111211 1 111

37 111111313113.111 111211111111121 11 11

38 111111111111.111 111111111111111 111 1

39 111111111111.111 111111111111112 1111

11

This adjacency matrix shows visually quite a convincing block structure.

Now follow, for the relations in this reduced vertex set, the fitted probabilities and the observed
frequencies of the relations. First the fitted probabilities:

24

@6

Posterior probabilities and frequencies for post-hoc coloring

...

For these classes, two threeway tables :

Posterior probabilities

Average posterior probabilities of relation 1 = (0, 0) in these blocks.

1 2

1 0.61 0.90

2 0.90 0.94

Average posterior probabilities of relation 2 = (1, 1) in these blocks.

1 2

1 0.23 0.03

2 0.03 0.06

Average posterior probabilities of relation 3 = (0, 1) in these blocks.

1 2

1 0.08 0.01

2 0.07 0.00

Average posterior probabilities of relation 4 = (1, 0) in these blocks.

1 2

1 0.08 0.07

2 0.01 0.00

And next the observed frequencies:

Observed frequencies

Observed relative frequencies of relation 1 = (0, 0) in these blocks.

1 2

1 0.59 0.92

2 0.92 0.94

Observed relative frequencies of relation 2 = (1, 1) in these blocks.

1 2

1 0.23 0.01

2 0.01 0.06

Observed relative frequencies of relation 3 = (0, 1) in these blocks.

1 2

1 0.09 0.00

2 0.07 0.00

Observed relative frequencies of relation 4 = (1, 0) in these blocks.

1 2

1 0.09 0.07

2 0.00 0.00

The fitted probabilities and the observed frequencies are almost the same, but not quite, due to the
Bayesian estimation method. The differences between them are not important. These matrices

25

provide, in more compact form, similar information as the matrices of probabilities of relations
between the vertices.

The very end provides a possibility for diagnosing the position of the vertices which were thrown
out because they did not conform well to the block structure. In this case, vertex 11 is the most
interesting.

Relations of poorly fitting vertices with these classes :

..

Observed relative frequencies of relations between vertex 11 and these classes.

1 2

(0, 0) 0.25 0.61

(1, 1) 0.75 0.00

(0, 1) 0.00 0.00

(1, 0) 0.00 0.39

This shows again, now in compact form, the propensity of actor 11 to have mutual relations with
group 1 and to send non-reciprocated friendship relations to group 2.

The graph with vertices colored according to their class (1 = yellow, 2 = green, 3 = red;
excluded = light blue) represents a kind of center-periphery structure, in which actor 11 (red)
is very central, the yellow class further is the center and the green class is the periphery. The
blue vertices are atypical in this classification. The isolated vertices are classified as green; this
indicates that the probabilities for a friendship relation for green vertices are so low that it is not
too improbable that a green vertex are isolated.

26

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28 29

30

31

32

33

34 35
36

37

38

39
Pajek

At this moment we have come to the end of the output for a single Gibbs sequence for 3 colors.
A next possibility is to run the program for more or less colors. Running it for 2-4 colors gives
the following results for the information Iy and the clarity of the block structure Hx . The figures
given in Table 1 show that the clearest class structure, as expressed by Hx , is obtained for c = 2.
This table shows a slight decrease in the information Iy when c goes from 2 to 4.

Table 1: Parameters for the class structure for Kapferer’s data set

c Iy Hx

2 0.43 0.12
3 0.41 0.25
4 0.40 0.41

This table leads to a preference for 2 rather than 3 classes. In Nowicki and Snijders (2001) we
analyzed the friendship and assistance relation in this network simultaneously. For this multiplex
or multivariate relation the method found 3 classes, with again actor 11, a line 1 tailor named
Lyashi, as a class on his own.

27

Part II

Programmer’s manual
The programmer’s manual will not be important for most users. It is intended for those who wish
to run BLOCKS outside of the StOCNET environment and to those who want to have a look inside
the source code.

The program consists of a basic computation part programmed by the author in Turbo Pas-
cal and Delphi; and the StOCNET windows shell, programmed by Peter Boer in Delphi, with
Mark Huisman (earlier Evelien Zeggelink) as the project leader (see Boer, Huisman, Snijders, and
Zeggelink, 2003). The computational part can be used both directly and from the windows shell.
The StOCNET windows shell is much easier for data specification and model definition.

10 Parts and units

The calculations of the program are carried out by the executable file BLOCKS.EXE which reads the
basic information file and executes the statistical procedures accordingly. No user interaction is
required, although there are possibilities of early termination.

If you wish to run BLOCKS outside of StOCNET, the project name must be given in the command
line, e.g.
BLOCKS kapfer
if kapfer is the name of the project, and there exists a kapfer.in file. This kapfer is called
a command line parameter. There are the following three ways to specify a command with a
command line parameter in Windows. The command line can be given at the DOS prompt (in a
Windows environment); it can be given in the Windows “Run” command (for Windows 98 and
higher); and it can be indicated in the “target” in the “properties” of a shortcut.

The source code is divided into the following units.
1. BLOCKMO, which contains some basic variables, a procedure for reading the basic information

file, and some initialisation routines.

2. MULBLO, which contains the computational routines.

3. BLOCKI, which contains routines for user interaction (and can be adapted to the desired
operating system, e.g., DOS or Windows).

4. B CONS, which is a short unit containing constants which can be chosen to compile the program
in the desired size.

5. RANGEN, which contains procedures for random number generation.

6. WBLIB, which contains some utilities.

28

11 Basic information file

The basic information file (named pname.in, where pname is the project name) is an ASCII file
which contains the commands for the computation part. It consists of the following lines. If a line
contains more than one number, these numbers must be separated by one or more blanks.

After the required information, the lines are allowed to contain at least one blank and after that
more text, which can be used for helpful information. However, the line with identifying vertices
or the name of the file containing identifying probabilities, if it is present (in which case it is line
13), should not contain additional text.

Items 9–12 can be considered advanced options.
1. A title line which is reproduced in the output but has not other effects.

2. The data file name.
(Must be composed of characters with ASCII numbers ranging from 43 to 126.)

3. The minimum and maximum number of colors, separated by a blank.
(Denote these number by cmin and cmax.)
Suggested defaults: 2 and 4.

4. The number of runs before convergence.
Suggested default: 10,000.

5. The number of runs after convergence.
Suggested default: 10,000.

6. The number of Gibbs sequences per estimated model.
Suggested default: 1 for data exploration, 3 for serious analysis.
The number 0 is allowed, and leads to an input check and a description of the alphabet,
without any Gibbs sequences.

7. The number 0 for a non-identified model, 1 for an identified model with a set of identifying
vertices, 2 for an identified model with an input matrix of prior probabilities. The value 2
should only be used if cmin = cmax.
(Denote this number by ident.)
Suggested default: 0.

8. The missing number indicator (one integer number).
Suggested default: 9.

9. The concentration parameter.
Suggested default: 100.

10. 1 if a search for good initial colorings is to be performed, 0 if the initial colorings are to be
determined randomly.
Suggested default: 1.

11. 1 if the pre-convergence iterations should use overdispersed colorings, 0 otherwise.
Suggested default: 1.

12. 1 if the pre-convergence iterations should use overdispersed probabilities, 0 otherwise.
Suggested default: 1.

13. If ident = 0 (see item 7 above), this line is absent.
If ident = 1, the numbers of the identifying vertices, followed by the number 0.
(Normally this is at least cmin - 1 numbers and at most cmax, before the terminating 0.)
If ident = 2, the name of the file with the prior probabilities.
(Requirements for this file are given above in section 7.2).

29

14. 0 if new output is to overwrite an output file of the same name (if this exists),
1 if new output is to be appended to an output file of the same name (if this exists).

15. The seed for the random number generator.
This determines the result, since the random number generator is only pseudo-random, which
means that it deterministic but functions just like a real random number generator. The value
0 implies that the program will determine a seed based on the clock time. Using the same
random number seed implies that exactly the same results will be obtained.

An example of a basic information file, as used for the analysis of Kapferer’s data set presented
above, is as follows.

Kapferer Taylor Shop time 2, friendship

Kapff2.dat (data file)

2 4 (minimum and maximum number of colors)

20000 (number of runs before convergence is assumed)

20000 (number of runs after convergence is assumed)

3 (number of Gibbs sequences per color)

0 (identification mode)

9 (missing number indicator)

100.00 (concentration parameter)

123 (random number seed)

1 (yes/no search for good starting colorings)

1 (yes/no overdispersed colorings in pre-convergence iterations)

1 (yes/no overdispersed probabilities in pre-convergence iterations)

0 (0 = rewrite, 1 = append output file)

The explanations between parentheses are not read by BLOCKS, and can be included or omitted
as desired.

12 Constants

The constants in unit B CONS are the following. They can be adapted to the possibilities of the
computer configuration and the desires of the user.

1. cmax, the maximum number of colors; a reasonable range is 5 to 10.

2. cc, the maximum absolute value of permitted data values; suggested cc = 9.

3. rmax, the maximum alphabet size; a reasonable range is 6 to 12.

4. r01max, the maximum of r01 (see the paper); a value higher than rmax is meaningless; a
reasonable value is rmax or slightly less.

5. mulmax, the maximum number of Gibbs sequences per model; this is only important for the
start of the program, where a search is done for optimal starting colorings; a reasonable value
is 5.

30

13 References

Batagelj, V., and Mrvar, A. 1997–2002. Pajek. Program for Large Network Analysis. Ljubljana:
University of Ljubljana.

Boer, P., Huisman, M., Snijders, T.A.B., and E.P.H. Zeggelink. 2003. StOCNET: An open soft-
ware system for the advanced statistical analysis of social networks. Version 1.4. Groningen:
ProGAMMA/ICS. Available from http://stat.gamma.rug.nl/stocnet/.

Borgatti, S., Everett, M.G., and Freeman, L.C. (1998), UCINET V, Reference Manual. Columbia,
SC: Analytic Technologies.

Holland, P., Laskey, K.B., and Leinhardt, S. (1983). “Stochastic blockmodels: Some first steps”.
Social Networks, 5, 109 – 137.

Kapferer, B. (1972). Strategy and transaction in an African factory. Manchester: Manchester Uni-
versity Press.

Lorrain, F., and White, H.C. (1971). “Structural equivalence of individuals in social networks”.
Journal of Mathematical Sociology, 1, 49 – 80.

Nowicki, K., and Snijders, T.A.B. (2001). “Estimation and prediction for stochastic blockstructures”.
Journal of the American Statistical Association, 96, 1077-1087.

Snijders, T., and Nowicki, K. (1997). “Estimation and prediction for stochastic blockmodels for graphs
with latent block structure”. Journal of Classification, 14, 75 – 100.

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. New York
and Cambridge: Cambridge University Press.

31

	BLOCKS
	Differences with earlier versions

	Theory
	The Bayesian approach
	The Gibbs sequence
	The number of classes
	Estimated probabilities

	Operation of the program
	Project
	Input data
	Output files
	Options
	Advanced options
	Identified and non-identified models

	Getting started
	Example: Kapferer's Tailor Shop
	Annotated output file

	Parts and units
	Basic information file
	Constants
	References

